开发可重复使用的碳亚微米复合材料,其镉(II)去除能力创历史新高。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengke Cui, Huiting Jiao, Shijie Yuan, Bin Dong, Zuxin Xu
{"title":"开发可重复使用的碳亚微米复合材料,其镉(II)去除能力创历史新高。","authors":"Mengke Cui, Huiting Jiao, Shijie Yuan, Bin Dong, Zuxin Xu","doi":"10.1002/advs.202408295","DOIUrl":null,"url":null,"abstract":"<p><p>Cd(II)-induced pollution across diverse water bodies severely threatens ecosystems and human health. Nevertheless, achieving ultra-efficient and cost-effective treatment of trace amounts of heavy metals remains a major challenge. Herein, the novel carbon sub-micrometer composites (CSMCs) supported Fe<sup>0</sup>@γ-Fe<sub>2</sub>O<sub>3</sub> core-shell clusters nanostructures are designed and synthesized through a series of universally applicable methods. Research data on adsorption behavior clearly revealed that resorcinol/formaldehyde 1.25-basic ferric acetate (RF-1.25BFA) and RF-1.25BFA-540 have surprising adsorption capacities. Employing the adsorbent dosage of 0.025 g L<sup>-1</sup>, the adsorption capacities for 10 mg L<sup>-1</sup> Cd(II) reached 400.00 mg g<sup>-1</sup> with ultrafast adsorption kinetics, alongside theoretical maximum adsorption capacities for Cd(II) of 1108.87 and 1065.06 mg g<sup>-1</sup> using 0.025 g L<sup>-1</sup> adsorbent, respectively, setting a new record-high level. Additionally, they demonstrated exceptional stability and reusability, maintaining Cd(II) removal efficiency above 95% even after 15 adsorption-desorption cycles. Importantly, this study is the first to unveil a new ultrafast successive two-step enrichment-hydrolysis adsorption mechanism for Cd(II) removal, emphasizing the critical role played by iron clusters nanostructures in constructing a high-alkalinity adsorption microenvironment on the surface of the materials. The findings reported pioneered a new avenue for the rational design of high-performance environmental remediation materials, aiming to overcome the limitations of traditional mine drainage treatment.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2408295"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Develop Reusable Carbon Sub-Micrometer Composites with Record-High Cd(II) Removal Capacity.\",\"authors\":\"Mengke Cui, Huiting Jiao, Shijie Yuan, Bin Dong, Zuxin Xu\",\"doi\":\"10.1002/advs.202408295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cd(II)-induced pollution across diverse water bodies severely threatens ecosystems and human health. Nevertheless, achieving ultra-efficient and cost-effective treatment of trace amounts of heavy metals remains a major challenge. Herein, the novel carbon sub-micrometer composites (CSMCs) supported Fe<sup>0</sup>@γ-Fe<sub>2</sub>O<sub>3</sub> core-shell clusters nanostructures are designed and synthesized through a series of universally applicable methods. Research data on adsorption behavior clearly revealed that resorcinol/formaldehyde 1.25-basic ferric acetate (RF-1.25BFA) and RF-1.25BFA-540 have surprising adsorption capacities. Employing the adsorbent dosage of 0.025 g L<sup>-1</sup>, the adsorption capacities for 10 mg L<sup>-1</sup> Cd(II) reached 400.00 mg g<sup>-1</sup> with ultrafast adsorption kinetics, alongside theoretical maximum adsorption capacities for Cd(II) of 1108.87 and 1065.06 mg g<sup>-1</sup> using 0.025 g L<sup>-1</sup> adsorbent, respectively, setting a new record-high level. Additionally, they demonstrated exceptional stability and reusability, maintaining Cd(II) removal efficiency above 95% even after 15 adsorption-desorption cycles. Importantly, this study is the first to unveil a new ultrafast successive two-step enrichment-hydrolysis adsorption mechanism for Cd(II) removal, emphasizing the critical role played by iron clusters nanostructures in constructing a high-alkalinity adsorption microenvironment on the surface of the materials. The findings reported pioneered a new avenue for the rational design of high-performance environmental remediation materials, aiming to overcome the limitations of traditional mine drainage treatment.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2408295\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202408295\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408295","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由镉(II)引起的各种水体污染严重威胁着生态系统和人类健康。然而,实现超高效、低成本地处理痕量重金属仍是一项重大挑战。本文通过一系列普遍适用的方法,设计并合成了支撑 Fe0@γ-Fe2O3 核壳团簇纳米结构的新型亚微米碳复合材料(CSMCs)。吸附行为的研究数据清楚地表明,间苯二酚/甲醛 1.25-碱式醋酸铁(RF-1.25BFA)和 RF-1.25BFA-540 具有惊人的吸附能力。在吸附剂用量为 0.025 g L-1 的情况下,它们对 10 mg L-1 Cd(II) 的吸附容量达到了 400.00 mg g-1,且吸附动力学速度极快;在吸附剂用量为 0.025 g L-1 的情况下,它们对 Cd(II) 的理论最大吸附容量分别为 1108.87 mg g-1 和 1065.06 mg g-1,创下了历史新高。此外,它们还表现出卓越的稳定性和可重复使用性,即使在经过 15 次吸附-解吸循环后,镉(II)去除率仍能保持在 95% 以上。重要的是,该研究首次揭示了一种全新的超快连续富集-水解两步吸附去除镉(II)的机制,强调了铁簇纳米结构在材料表面构建高碱度吸附微环境中的关键作用。该研究成果为合理设计高性能环境修复材料开辟了一条新途径,旨在克服传统矿井排水处理的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Develop Reusable Carbon Sub-Micrometer Composites with Record-High Cd(II) Removal Capacity.

Cd(II)-induced pollution across diverse water bodies severely threatens ecosystems and human health. Nevertheless, achieving ultra-efficient and cost-effective treatment of trace amounts of heavy metals remains a major challenge. Herein, the novel carbon sub-micrometer composites (CSMCs) supported Fe0@γ-Fe2O3 core-shell clusters nanostructures are designed and synthesized through a series of universally applicable methods. Research data on adsorption behavior clearly revealed that resorcinol/formaldehyde 1.25-basic ferric acetate (RF-1.25BFA) and RF-1.25BFA-540 have surprising adsorption capacities. Employing the adsorbent dosage of 0.025 g L-1, the adsorption capacities for 10 mg L-1 Cd(II) reached 400.00 mg g-1 with ultrafast adsorption kinetics, alongside theoretical maximum adsorption capacities for Cd(II) of 1108.87 and 1065.06 mg g-1 using 0.025 g L-1 adsorbent, respectively, setting a new record-high level. Additionally, they demonstrated exceptional stability and reusability, maintaining Cd(II) removal efficiency above 95% even after 15 adsorption-desorption cycles. Importantly, this study is the first to unveil a new ultrafast successive two-step enrichment-hydrolysis adsorption mechanism for Cd(II) removal, emphasizing the critical role played by iron clusters nanostructures in constructing a high-alkalinity adsorption microenvironment on the surface of the materials. The findings reported pioneered a new avenue for the rational design of high-performance environmental remediation materials, aiming to overcome the limitations of traditional mine drainage treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信