Zhihao Wang, Xianmei Chen, Tingting Wang, Mingshuo Tang, Zhiwei He, Yunlong Wang, Jun Ma
{"title":"用于临床放射治疗的高分辨率三维射色水凝胶光子晶体剂量计。","authors":"Zhihao Wang, Xianmei Chen, Tingting Wang, Mingshuo Tang, Zhiwei He, Yunlong Wang, Jun Ma","doi":"10.1039/d4mh01235f","DOIUrl":null,"url":null,"abstract":"<p><p>The precise, rapid and direct visualization of 3D topographical dose in the target tissue that is crucial for effective radiation therapy remains a challenge. Herein, by combining hydrogel photonic crystals with film stacking or 3D printing, a 3D radiochromic dosimeter with a dose sensitivity of up to 10 nm Gy<sup>-1</sup>, a spatial resolution <50 μm, and the ability to detect complex 3D topographical dose distribution was proposed for clinical radiation dose verification. The sensitivity and response range of the dosimeter by radiation-induced polymer cross-linking and consequent Bragg wavelength shift can be tuned <i>via</i> the solid content and extent of acrylate modification. The combination of rapid readout, low dose response, high spatial resolution, and great pre-irradiation and post-irradiation stability highlights the translational potential of this technology for topographical dose mapping in clinical radiotherapy applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-resolution 3D radiochromic hydrogel photonic crystal dosimeter for clinical radiotherapy.\",\"authors\":\"Zhihao Wang, Xianmei Chen, Tingting Wang, Mingshuo Tang, Zhiwei He, Yunlong Wang, Jun Ma\",\"doi\":\"10.1039/d4mh01235f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precise, rapid and direct visualization of 3D topographical dose in the target tissue that is crucial for effective radiation therapy remains a challenge. Herein, by combining hydrogel photonic crystals with film stacking or 3D printing, a 3D radiochromic dosimeter with a dose sensitivity of up to 10 nm Gy<sup>-1</sup>, a spatial resolution <50 μm, and the ability to detect complex 3D topographical dose distribution was proposed for clinical radiation dose verification. The sensitivity and response range of the dosimeter by radiation-induced polymer cross-linking and consequent Bragg wavelength shift can be tuned <i>via</i> the solid content and extent of acrylate modification. The combination of rapid readout, low dose response, high spatial resolution, and great pre-irradiation and post-irradiation stability highlights the translational potential of this technology for topographical dose mapping in clinical radiotherapy applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01235f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01235f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A high-resolution 3D radiochromic hydrogel photonic crystal dosimeter for clinical radiotherapy.
The precise, rapid and direct visualization of 3D topographical dose in the target tissue that is crucial for effective radiation therapy remains a challenge. Herein, by combining hydrogel photonic crystals with film stacking or 3D printing, a 3D radiochromic dosimeter with a dose sensitivity of up to 10 nm Gy-1, a spatial resolution <50 μm, and the ability to detect complex 3D topographical dose distribution was proposed for clinical radiation dose verification. The sensitivity and response range of the dosimeter by radiation-induced polymer cross-linking and consequent Bragg wavelength shift can be tuned via the solid content and extent of acrylate modification. The combination of rapid readout, low dose response, high spatial resolution, and great pre-irradiation and post-irradiation stability highlights the translational potential of this technology for topographical dose mapping in clinical radiotherapy applications.