{"title":"用于特异性肉眼检测尼帕病毒的单拷贝灵敏且可现场部署的一锅式 RT-RPA CRISPR/Cas12a 检测方法","authors":"Kaikai Jin, Pei Huang, Boyi Li, Zengguo Cao, Zanheng Huang, Zimo Zhang, Meihui Liu, Hao Li, Lijuan Niu, Tianyi Zhang, Yuanyuan Li, Xuemeng Li, Hualei Wang, Haili Zhang","doi":"10.1155/2024/4118007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Nipah virus (NiV) is an emerging bat-borne zoonotic virus that can be transmitted to humans and other animals through infected bats or contaminated foods. The disease is highly lethal in humans (40%–75%) and has the potential for human-to-human transmission. Currently, there are no approved treatments or vaccines for NiV infection in humans or animals. Consequently, there is a pressing need for a highly sensitive, precise, and visually detectable assay to enable early intervention and mitigate the transmission of NiV infection. Here, we report a single-copy sensitive, field-deployable, one-pot visual reverse transcription-recombinase polymerase amplification (RT-RPA)-clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associate system (Cas)12 for the detection of NiV. The assay works by targeting the <i>N</i> gene of NiV, and the results are directly visible to the naked eye. The assay has demonstrated the ability to detect as few as 5.5 copies/μl of positive plasmids or 5.5 × 10<sup>1</sup> copies/μl of RNA transcripts when reacted at constant temperature for 40 min. It showed high specificity for NiV and had no cross-reaction with other pathogens, including rabies virus (RABV), Japanese encephalitis virus (JEV), herpes simplex virus type 1 (HSV-1), Hendra virus (HeV), and <i>Streptococcus suis</i> (<i>S. suis</i>), that can cause clinical symptoms similar to those of NiV infection. Moreover, this assay had a 100% coincidence rate with the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method recommended by the World Organization for Animal Health (WOAH) for the detection of simulated clinical samples, indicating that it has great potential as an ultrasensitive, simple, and portable novel assay for the onsite diagnosis of NiV infection.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4118007","citationCount":"0","resultStr":"{\"title\":\"A Single-Copy Sensitive and Field-Deployable One-Pot RT-RPA CRISPR/Cas12a Assay for the Specific Visual Detection of the Nipah Virus\",\"authors\":\"Kaikai Jin, Pei Huang, Boyi Li, Zengguo Cao, Zanheng Huang, Zimo Zhang, Meihui Liu, Hao Li, Lijuan Niu, Tianyi Zhang, Yuanyuan Li, Xuemeng Li, Hualei Wang, Haili Zhang\",\"doi\":\"10.1155/2024/4118007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Nipah virus (NiV) is an emerging bat-borne zoonotic virus that can be transmitted to humans and other animals through infected bats or contaminated foods. The disease is highly lethal in humans (40%–75%) and has the potential for human-to-human transmission. Currently, there are no approved treatments or vaccines for NiV infection in humans or animals. Consequently, there is a pressing need for a highly sensitive, precise, and visually detectable assay to enable early intervention and mitigate the transmission of NiV infection. Here, we report a single-copy sensitive, field-deployable, one-pot visual reverse transcription-recombinase polymerase amplification (RT-RPA)-clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associate system (Cas)12 for the detection of NiV. The assay works by targeting the <i>N</i> gene of NiV, and the results are directly visible to the naked eye. The assay has demonstrated the ability to detect as few as 5.5 copies/μl of positive plasmids or 5.5 × 10<sup>1</sup> copies/μl of RNA transcripts when reacted at constant temperature for 40 min. It showed high specificity for NiV and had no cross-reaction with other pathogens, including rabies virus (RABV), Japanese encephalitis virus (JEV), herpes simplex virus type 1 (HSV-1), Hendra virus (HeV), and <i>Streptococcus suis</i> (<i>S. suis</i>), that can cause clinical symptoms similar to those of NiV infection. Moreover, this assay had a 100% coincidence rate with the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method recommended by the World Organization for Animal Health (WOAH) for the detection of simulated clinical samples, indicating that it has great potential as an ultrasensitive, simple, and portable novel assay for the onsite diagnosis of NiV infection.</p>\\n </div>\",\"PeriodicalId\":234,\"journal\":{\"name\":\"Transboundary and Emerging Diseases\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4118007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transboundary and Emerging Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4118007\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4118007","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
A Single-Copy Sensitive and Field-Deployable One-Pot RT-RPA CRISPR/Cas12a Assay for the Specific Visual Detection of the Nipah Virus
Nipah virus (NiV) is an emerging bat-borne zoonotic virus that can be transmitted to humans and other animals through infected bats or contaminated foods. The disease is highly lethal in humans (40%–75%) and has the potential for human-to-human transmission. Currently, there are no approved treatments or vaccines for NiV infection in humans or animals. Consequently, there is a pressing need for a highly sensitive, precise, and visually detectable assay to enable early intervention and mitigate the transmission of NiV infection. Here, we report a single-copy sensitive, field-deployable, one-pot visual reverse transcription-recombinase polymerase amplification (RT-RPA)-clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associate system (Cas)12 for the detection of NiV. The assay works by targeting the N gene of NiV, and the results are directly visible to the naked eye. The assay has demonstrated the ability to detect as few as 5.5 copies/μl of positive plasmids or 5.5 × 101 copies/μl of RNA transcripts when reacted at constant temperature for 40 min. It showed high specificity for NiV and had no cross-reaction with other pathogens, including rabies virus (RABV), Japanese encephalitis virus (JEV), herpes simplex virus type 1 (HSV-1), Hendra virus (HeV), and Streptococcus suis (S. suis), that can cause clinical symptoms similar to those of NiV infection. Moreover, this assay had a 100% coincidence rate with the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method recommended by the World Organization for Animal Health (WOAH) for the detection of simulated clinical samples, indicating that it has great potential as an ultrasensitive, simple, and portable novel assay for the onsite diagnosis of NiV infection.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.