{"title":"应用非靶向代谢组学策略探索 NMN 对衰老模型小鼠的干预效果和机制","authors":"Yuxian Lin, Yan Wu, Yuanying Zhu, Ting Luo, Zheng Sun, Xuecun Liu, Yingcong Yu, Hui Xu","doi":"10.1155/2024/8472130","DOIUrl":null,"url":null,"abstract":"<div>\n <p><b>Background:</b> Aging is usually accompanied by a significant decline in nicotinamide adenine dinucleotide (NAD<sup>+</sup>) level. Nicotinamide mononucleotide (NMN) is a crucial precursor molecule of NAD<sup>+</sup> with a variety of bioactivities beneficial to health, and the present study just aimed to explore the antiaging effects of NMN and the mechanism of action by using a nontargeted metabolomic strategy.</p>\n <p><b>Methods:</b> An aging mouse model induced by D-galactosamine (D-gal) was established, which was followed by treatment with NMN (at doses of 100 to 500 mg/kg per day) via oral administration for 10 weeks. The physiological and biochemical changes involved in the aging process were closely monitored to investigate the interventional effects of NMN. Plasma samples were subjected to assay by UPLC-Q-Orbitrap HRMS to reveal the mechanism of action via systematic data mining and statistical analysis.</p>\n <p><b>Results:</b> D-gal injection at a dose of 500 mg/kg per day for 7 weeks successfully induced the aging model in mice. Long-term supplementation with NMN could significantly improve the antioxidant and immune function, boost lipid metabolism, and reduce aging-related inflammatory response in a dose- and time-dependent manner. The nontargeted metabolomic analysis further demonstrated that the interventional effect of NMN on aging mice may be closely related to the regulation of lipid and purine metabolism.</p>\n <p><b>Conclusions:</b> Long-term NMN supplementation could display robust antiaging effects mainly by regulating lipid and purine metabolism, which thus deserves great attention for antiaging intervention.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8472130","citationCount":"0","resultStr":"{\"title\":\"Applying an Untargeted Metabolomic Strategy to Explore the Interventional Effect and Mechanism of NMN on Aging Model Mice\",\"authors\":\"Yuxian Lin, Yan Wu, Yuanying Zhu, Ting Luo, Zheng Sun, Xuecun Liu, Yingcong Yu, Hui Xu\",\"doi\":\"10.1155/2024/8472130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p><b>Background:</b> Aging is usually accompanied by a significant decline in nicotinamide adenine dinucleotide (NAD<sup>+</sup>) level. Nicotinamide mononucleotide (NMN) is a crucial precursor molecule of NAD<sup>+</sup> with a variety of bioactivities beneficial to health, and the present study just aimed to explore the antiaging effects of NMN and the mechanism of action by using a nontargeted metabolomic strategy.</p>\\n <p><b>Methods:</b> An aging mouse model induced by D-galactosamine (D-gal) was established, which was followed by treatment with NMN (at doses of 100 to 500 mg/kg per day) via oral administration for 10 weeks. The physiological and biochemical changes involved in the aging process were closely monitored to investigate the interventional effects of NMN. Plasma samples were subjected to assay by UPLC-Q-Orbitrap HRMS to reveal the mechanism of action via systematic data mining and statistical analysis.</p>\\n <p><b>Results:</b> D-gal injection at a dose of 500 mg/kg per day for 7 weeks successfully induced the aging model in mice. Long-term supplementation with NMN could significantly improve the antioxidant and immune function, boost lipid metabolism, and reduce aging-related inflammatory response in a dose- and time-dependent manner. The nontargeted metabolomic analysis further demonstrated that the interventional effect of NMN on aging mice may be closely related to the regulation of lipid and purine metabolism.</p>\\n <p><b>Conclusions:</b> Long-term NMN supplementation could display robust antiaging effects mainly by regulating lipid and purine metabolism, which thus deserves great attention for antiaging intervention.</p>\\n </div>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8472130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8472130\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8472130","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Applying an Untargeted Metabolomic Strategy to Explore the Interventional Effect and Mechanism of NMN on Aging Model Mice
Background: Aging is usually accompanied by a significant decline in nicotinamide adenine dinucleotide (NAD+) level. Nicotinamide mononucleotide (NMN) is a crucial precursor molecule of NAD+ with a variety of bioactivities beneficial to health, and the present study just aimed to explore the antiaging effects of NMN and the mechanism of action by using a nontargeted metabolomic strategy.
Methods: An aging mouse model induced by D-galactosamine (D-gal) was established, which was followed by treatment with NMN (at doses of 100 to 500 mg/kg per day) via oral administration for 10 weeks. The physiological and biochemical changes involved in the aging process were closely monitored to investigate the interventional effects of NMN. Plasma samples were subjected to assay by UPLC-Q-Orbitrap HRMS to reveal the mechanism of action via systematic data mining and statistical analysis.
Results: D-gal injection at a dose of 500 mg/kg per day for 7 weeks successfully induced the aging model in mice. Long-term supplementation with NMN could significantly improve the antioxidant and immune function, boost lipid metabolism, and reduce aging-related inflammatory response in a dose- and time-dependent manner. The nontargeted metabolomic analysis further demonstrated that the interventional effect of NMN on aging mice may be closely related to the regulation of lipid and purine metabolism.
Conclusions: Long-term NMN supplementation could display robust antiaging effects mainly by regulating lipid and purine metabolism, which thus deserves great attention for antiaging intervention.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality