Huiqi Wang, Xiaoling Deng, Xing-Zhen Chen, Aman Ullah
{"title":"多功能温敏脂质-蛋白质-聚合物共轭物:定制药物输送和生物成像","authors":"Huiqi Wang, Xiaoling Deng, Xing-Zhen Chen, Aman Ullah","doi":"10.1021/acsami.4c16258","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a protein–polymer bioconjugate comprising bovine serum albumin (BSA) and a lipid-based thermoresponsive block copolymer. These amphiphilic BSA-polymer conjugates can autonomously be organized into vesicular compartments for codelivery of glucose oxidase (GOx) and doxorubicin (DOX), demonstrating high drug loading content and remarkable antitumor activity via synergistic cancer therapy combining chemo-starvation strategies. Through the incorporation of a hydrophilic BSA block, the lower critical solution temperature (LCST) of the bioconjugates is tuned to around 40 °C, facilitating their targeted drug delivery to tumor cells. Consequently, these smart protein–polymer conjugates present greater promise compared to traditional drug delivery vehicles, particularly in the realm of anticancer therapy. Moreover, these bioconjugates displayed enhanced intracellular fluorescence intensity with increasing temperature, attributed to the clustering-triggered emission of the nonconventional chromophore moieties within poly(vinylcaprolactam) (PNVCL). The active aggregation-induced emission (AIE) characteristic and excellent biocompatibility suggest an opportunity to further apply these bioconjugates for biosensing and cellular imaging.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"23 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Temperature-Sensitive Lipid–Protein–Polymer Conjugates: Tailored Drug Delivery and Bioimaging\",\"authors\":\"Huiqi Wang, Xiaoling Deng, Xing-Zhen Chen, Aman Ullah\",\"doi\":\"10.1021/acsami.4c16258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a protein–polymer bioconjugate comprising bovine serum albumin (BSA) and a lipid-based thermoresponsive block copolymer. These amphiphilic BSA-polymer conjugates can autonomously be organized into vesicular compartments for codelivery of glucose oxidase (GOx) and doxorubicin (DOX), demonstrating high drug loading content and remarkable antitumor activity via synergistic cancer therapy combining chemo-starvation strategies. Through the incorporation of a hydrophilic BSA block, the lower critical solution temperature (LCST) of the bioconjugates is tuned to around 40 °C, facilitating their targeted drug delivery to tumor cells. Consequently, these smart protein–polymer conjugates present greater promise compared to traditional drug delivery vehicles, particularly in the realm of anticancer therapy. Moreover, these bioconjugates displayed enhanced intracellular fluorescence intensity with increasing temperature, attributed to the clustering-triggered emission of the nonconventional chromophore moieties within poly(vinylcaprolactam) (PNVCL). The active aggregation-induced emission (AIE) characteristic and excellent biocompatibility suggest an opportunity to further apply these bioconjugates for biosensing and cellular imaging.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c16258\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16258","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifunctional Temperature-Sensitive Lipid–Protein–Polymer Conjugates: Tailored Drug Delivery and Bioimaging
In this study, we introduce a protein–polymer bioconjugate comprising bovine serum albumin (BSA) and a lipid-based thermoresponsive block copolymer. These amphiphilic BSA-polymer conjugates can autonomously be organized into vesicular compartments for codelivery of glucose oxidase (GOx) and doxorubicin (DOX), demonstrating high drug loading content and remarkable antitumor activity via synergistic cancer therapy combining chemo-starvation strategies. Through the incorporation of a hydrophilic BSA block, the lower critical solution temperature (LCST) of the bioconjugates is tuned to around 40 °C, facilitating their targeted drug delivery to tumor cells. Consequently, these smart protein–polymer conjugates present greater promise compared to traditional drug delivery vehicles, particularly in the realm of anticancer therapy. Moreover, these bioconjugates displayed enhanced intracellular fluorescence intensity with increasing temperature, attributed to the clustering-triggered emission of the nonconventional chromophore moieties within poly(vinylcaprolactam) (PNVCL). The active aggregation-induced emission (AIE) characteristic and excellent biocompatibility suggest an opportunity to further apply these bioconjugates for biosensing and cellular imaging.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.