Narmadha Manoranjan, Wangxi Fang, Yuzhang Zhu, Prof. Dr. Jian Jin
{"title":"用于对映体选择性氨基酸分离的手性 COFs 膜","authors":"Narmadha Manoranjan, Wangxi Fang, Yuzhang Zhu, Prof. Dr. Jian Jin","doi":"10.1002/anie.202417088","DOIUrl":null,"url":null,"abstract":"<p>Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel. This composite membrane exhibits excellent selectivity for racemic phenylalanine with the highest enantiomeric excess value of up to 99.4 %. The adsorption and molecular modeling studies substantiate the experiment results by showing higher bonding affinity towards D-isomer over L-isomer. The excellent enantioselective gating performance unveils the porous COF skeleton with chiral selectors and the size-matching synergy for stereoselective interactions with chiral isomers.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 5","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Chiral COFs Membrane for Enantioselective Amino Acid Separation\",\"authors\":\"Narmadha Manoranjan, Wangxi Fang, Yuzhang Zhu, Prof. Dr. Jian Jin\",\"doi\":\"10.1002/anie.202417088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel. This composite membrane exhibits excellent selectivity for racemic phenylalanine with the highest enantiomeric excess value of up to 99.4 %. The adsorption and molecular modeling studies substantiate the experiment results by showing higher bonding affinity towards D-isomer over L-isomer. The excellent enantioselective gating performance unveils the porous COF skeleton with chiral selectors and the size-matching synergy for stereoselective interactions with chiral isomers.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 5\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417088\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417088","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Chiral COFs Membrane for Enantioselective Amino Acid Separation
Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel. This composite membrane exhibits excellent selectivity for racemic phenylalanine with the highest enantiomeric excess value of up to 99.4 %. The adsorption and molecular modeling studies substantiate the experiment results by showing higher bonding affinity towards D-isomer over L-isomer. The excellent enantioselective gating performance unveils the porous COF skeleton with chiral selectors and the size-matching synergy for stereoselective interactions with chiral isomers.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.