由金属有机框架、水凝胶和脱矿骨基质组成的多功能支架用于治疗类固醇引起的股骨头坏死

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-22 DOI:10.1002/smll.202407758
Liangjie Bai, Xiaolei Zhang, Wei Shen, Peng Wang, Xin Yin, Jianing Liu, Hailun Xu, Bing Liu, Zhentao Man, Wei Li
{"title":"由金属有机框架、水凝胶和脱矿骨基质组成的多功能支架用于治疗类固醇引起的股骨头坏死","authors":"Liangjie Bai, Xiaolei Zhang, Wei Shen, Peng Wang, Xin Yin, Jianing Liu, Hailun Xu, Bing Liu, Zhentao Man, Wei Li","doi":"10.1002/smll.202407758","DOIUrl":null,"url":null,"abstract":"Overproduction of reactive oxygen species (ROS) results in oxidative stress, a critical factor in the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Excess ROS not only hinders the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) but also impairs mitochondrial structure and function, resulting in irreversible cellular damage. Herein, a biomimetic multifunctional scaffold comprising Zn-modified metal–organic framework 818 (Zn-MOF-818) loaded with deferoxamine (DFO), gelatin methacryloyl (GelMA) hydrogel, and demineralized bone matrix (DBM) is shown to scavenge excess ROS, promote angiogenesis, and regulate immunity. Introduced Zn significantly enhances the superoxide dismutase- and catalase-like activities of MOF-818, which increases ROS-scavenging efficiency. Zn-MOF-818 disrupts the vicious intracellular cycle of mitochondrial dysfunction and ROS accumulation by enhancing mitophagy, stabilizing mitochondrial function, and upregulating antioxidant genes. Additionally, Zn-MOF-818 facilitates the polarization of macrophages toward the M2 phenotype and alleviates inflammation, creating an advantageous immune microenvironment for osteogenic differentiation of BMSCs. The release of DFO, an activator of the HIF-1<i>α</i> pathway, and Zn<sup>2+</sup> from Zn-MOF-818, along with the secretion of various cytokines from DBM (such as bone morphogenetic proteins and vascular endothelial growth factors), enhances angiogenesis and osteogenesis. This scaffold targets multiple factors concurrently, offering a promising new approach for treating SONFH.","PeriodicalId":228,"journal":{"name":"Small","volume":"4 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Scaffold Comprising Metal–Organic Framework, Hydrogel, and Demineralized Bone Matrix for the Treatment of Steroid-Induced Femoral Head Necrosis\",\"authors\":\"Liangjie Bai, Xiaolei Zhang, Wei Shen, Peng Wang, Xin Yin, Jianing Liu, Hailun Xu, Bing Liu, Zhentao Man, Wei Li\",\"doi\":\"10.1002/smll.202407758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overproduction of reactive oxygen species (ROS) results in oxidative stress, a critical factor in the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Excess ROS not only hinders the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) but also impairs mitochondrial structure and function, resulting in irreversible cellular damage. Herein, a biomimetic multifunctional scaffold comprising Zn-modified metal–organic framework 818 (Zn-MOF-818) loaded with deferoxamine (DFO), gelatin methacryloyl (GelMA) hydrogel, and demineralized bone matrix (DBM) is shown to scavenge excess ROS, promote angiogenesis, and regulate immunity. Introduced Zn significantly enhances the superoxide dismutase- and catalase-like activities of MOF-818, which increases ROS-scavenging efficiency. Zn-MOF-818 disrupts the vicious intracellular cycle of mitochondrial dysfunction and ROS accumulation by enhancing mitophagy, stabilizing mitochondrial function, and upregulating antioxidant genes. Additionally, Zn-MOF-818 facilitates the polarization of macrophages toward the M2 phenotype and alleviates inflammation, creating an advantageous immune microenvironment for osteogenic differentiation of BMSCs. The release of DFO, an activator of the HIF-1<i>α</i> pathway, and Zn<sup>2+</sup> from Zn-MOF-818, along with the secretion of various cytokines from DBM (such as bone morphogenetic proteins and vascular endothelial growth factors), enhances angiogenesis and osteogenesis. This scaffold targets multiple factors concurrently, offering a promising new approach for treating SONFH.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202407758\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407758","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

活性氧(ROS)的过度产生会导致氧化应激,这是类固醇诱发的股骨头坏死(SONFH)发病机制中的一个关键因素。过量的 ROS 不仅会阻碍骨髓间充质干细胞(BMSCs)的成骨分化,还会损害线粒体的结构和功能,造成不可逆的细胞损伤。在本文中,一种生物仿生多功能支架被证明具有清除过量 ROS、促进血管生成和调节免疫的作用,该支架由负载有去氧胺(DFO)的锌改性金属有机框架 818(Zn-MOF-818)、甲基丙烯酰明胶(GelMA)水凝胶和脱矿骨基质(DBM)组成。引入的锌能明显增强 MOF-818 的超氧化物歧化酶和过氧化氢酶类活性,从而提高清除 ROS 的效率。Zn-MOF-818 通过增强有丝分裂、稳定线粒体功能和上调抗氧化基因,打破了线粒体功能障碍和 ROS 积累的细胞内恶性循环。此外,Zn-MOF-818 还能促进巨噬细胞向 M2 表型极化,缓解炎症,为 BMSCs 的成骨分化创造有利的免疫微环境。Zn-MOF-818 释放的 HIF-1α 通路激活剂 DFO 和 Zn2+,以及 DBM 分泌的各种细胞因子(如骨形态发生蛋白和血管内皮生长因子),可促进血管生成和成骨。这种支架同时针对多种因素,为治疗 SONFH 提供了一种前景广阔的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional Scaffold Comprising Metal–Organic Framework, Hydrogel, and Demineralized Bone Matrix for the Treatment of Steroid-Induced Femoral Head Necrosis

Multifunctional Scaffold Comprising Metal–Organic Framework, Hydrogel, and Demineralized Bone Matrix for the Treatment of Steroid-Induced Femoral Head Necrosis
Overproduction of reactive oxygen species (ROS) results in oxidative stress, a critical factor in the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Excess ROS not only hinders the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) but also impairs mitochondrial structure and function, resulting in irreversible cellular damage. Herein, a biomimetic multifunctional scaffold comprising Zn-modified metal–organic framework 818 (Zn-MOF-818) loaded with deferoxamine (DFO), gelatin methacryloyl (GelMA) hydrogel, and demineralized bone matrix (DBM) is shown to scavenge excess ROS, promote angiogenesis, and regulate immunity. Introduced Zn significantly enhances the superoxide dismutase- and catalase-like activities of MOF-818, which increases ROS-scavenging efficiency. Zn-MOF-818 disrupts the vicious intracellular cycle of mitochondrial dysfunction and ROS accumulation by enhancing mitophagy, stabilizing mitochondrial function, and upregulating antioxidant genes. Additionally, Zn-MOF-818 facilitates the polarization of macrophages toward the M2 phenotype and alleviates inflammation, creating an advantageous immune microenvironment for osteogenic differentiation of BMSCs. The release of DFO, an activator of the HIF-1α pathway, and Zn2+ from Zn-MOF-818, along with the secretion of various cytokines from DBM (such as bone morphogenetic proteins and vascular endothelial growth factors), enhances angiogenesis and osteogenesis. This scaffold targets multiple factors concurrently, offering a promising new approach for treating SONFH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信