Yumiao Tian, Pengfei Hou, Huiwen Zhang, Yu Xie, Gang Chen, Quan Li, Fei Du, Aleksandra Vojvodic, Jianzhong Wu, Xing Meng
{"title":"关于 MXenes 的潜在氧化行为和抗氧化策略的理论见解","authors":"Yumiao Tian, Pengfei Hou, Huiwen Zhang, Yu Xie, Gang Chen, Quan Li, Fei Du, Aleksandra Vojvodic, Jianzhong Wu, Xing Meng","doi":"10.1038/s41467-024-54455-z","DOIUrl":null,"url":null,"abstract":"<p>Significant efforts have been devoted to investigating the oxidation of MXenes in various environments. However, the underlying mechanism of MXene oxidation and its dependence on the electrode potential remain poorly understood. Here we show the oxidation behavior of MXenes under the working conditions of electrochemical processes in terms of kinetics and thermodynamics by using constant-potential ab initio simulations. The theoretical results indicate that the potential effects can be attributed to the nucleophilic attack of water molecules on metal atoms, similar to that taking place in the Oxygen Evolution Reaction. Building upon these findings, we deduced the oxidation potential of the common MXenes, and proposed antioxidant strategies for MXene. Finally, we demonstrated that MBenes, the boron analogs of MXenes, may undergo a similar nucleophilic attack in water and inferred that molecule-induced Walden inversion is widely present in material reconstructions. This work contributes to a fundamental understanding MXene stability at the atomic level, and promotes the transition in materials discovery from trial-and-error synthesis to rational design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"60 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes\",\"authors\":\"Yumiao Tian, Pengfei Hou, Huiwen Zhang, Yu Xie, Gang Chen, Quan Li, Fei Du, Aleksandra Vojvodic, Jianzhong Wu, Xing Meng\",\"doi\":\"10.1038/s41467-024-54455-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Significant efforts have been devoted to investigating the oxidation of MXenes in various environments. However, the underlying mechanism of MXene oxidation and its dependence on the electrode potential remain poorly understood. Here we show the oxidation behavior of MXenes under the working conditions of electrochemical processes in terms of kinetics and thermodynamics by using constant-potential ab initio simulations. The theoretical results indicate that the potential effects can be attributed to the nucleophilic attack of water molecules on metal atoms, similar to that taking place in the Oxygen Evolution Reaction. Building upon these findings, we deduced the oxidation potential of the common MXenes, and proposed antioxidant strategies for MXene. Finally, we demonstrated that MBenes, the boron analogs of MXenes, may undergo a similar nucleophilic attack in water and inferred that molecule-induced Walden inversion is widely present in material reconstructions. This work contributes to a fundamental understanding MXene stability at the atomic level, and promotes the transition in materials discovery from trial-and-error synthesis to rational design.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54455-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54455-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
人们一直致力于研究二甲苯在各种环境中的氧化作用。然而,人们对 MXene 氧化的基本机理及其与电极电位的关系仍然知之甚少。在此,我们通过恒电位 ab initio 模拟,从动力学和热力学的角度展示了 MXenes 在电化学过程工作条件下的氧化行为。理论结果表明,电位效应可归因于水分子对金属原子的亲核攻击,这与氧进化反应中发生的情况类似。在这些发现的基础上,我们推导出了常见二甲氧苯的氧化电位,并提出了二甲氧苯的抗氧化策略。最后,我们证明了 MXenes 的硼类似物 MBenes 也可能在水中发生类似的亲核攻击,并推断出分子诱导的瓦尔登反转广泛存在于材料重构中。这项工作有助于从根本上理解原子水平的 MXene 稳定性,并促进材料发现从试错合成向合理设计过渡。
Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes
Significant efforts have been devoted to investigating the oxidation of MXenes in various environments. However, the underlying mechanism of MXene oxidation and its dependence on the electrode potential remain poorly understood. Here we show the oxidation behavior of MXenes under the working conditions of electrochemical processes in terms of kinetics and thermodynamics by using constant-potential ab initio simulations. The theoretical results indicate that the potential effects can be attributed to the nucleophilic attack of water molecules on metal atoms, similar to that taking place in the Oxygen Evolution Reaction. Building upon these findings, we deduced the oxidation potential of the common MXenes, and proposed antioxidant strategies for MXene. Finally, we demonstrated that MBenes, the boron analogs of MXenes, may undergo a similar nucleophilic attack in water and inferred that molecule-induced Walden inversion is widely present in material reconstructions. This work contributes to a fundamental understanding MXene stability at the atomic level, and promotes the transition in materials discovery from trial-and-error synthesis to rational design.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.