Benjamin M. Gallant, Philippe Holzhey, Joel A. Smith, Saqlain Choudhary, Karim A. Elmestekawy, Pietro Caprioglio, Igal Levine, Alexandra A. Sheader, Esther Y-H. Hung, Fengning Yang, Daniel T. W. Toolan, Rachel C. Kilbride, Karl-Augustin Zaininger, James M. Ball, M. Greyson Christoforo, Nakita K. Noel, Laura M. Herz, Dominik J. Kubicki, Henry J. Snaith
{"title":"一种绿色溶剂实现了稳定的甲脒三碘化铅包晶石太阳能电池的前驱相工程","authors":"Benjamin M. Gallant, Philippe Holzhey, Joel A. Smith, Saqlain Choudhary, Karim A. Elmestekawy, Pietro Caprioglio, Igal Levine, Alexandra A. Sheader, Esther Y-H. Hung, Fengning Yang, Daniel T. W. Toolan, Rachel C. Kilbride, Karl-Augustin Zaininger, James M. Ball, M. Greyson Christoforo, Nakita K. Noel, Laura M. Herz, Dominik J. Kubicki, Henry J. Snaith","doi":"10.1038/s41467-024-54113-4","DOIUrl":null,"url":null,"abstract":"<p>Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI<sub>3</sub>), fully processed under ambient conditions. PSCs utilising our α-FAPbI<sub>3</sub> reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA<sup>+</sup> in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA<sup>+</sup>-based perovskites can be competitively stable despite the inherent metastability of the α-phase.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells\",\"authors\":\"Benjamin M. Gallant, Philippe Holzhey, Joel A. Smith, Saqlain Choudhary, Karim A. Elmestekawy, Pietro Caprioglio, Igal Levine, Alexandra A. Sheader, Esther Y-H. Hung, Fengning Yang, Daniel T. W. Toolan, Rachel C. Kilbride, Karl-Augustin Zaininger, James M. Ball, M. Greyson Christoforo, Nakita K. Noel, Laura M. Herz, Dominik J. Kubicki, Henry J. Snaith\",\"doi\":\"10.1038/s41467-024-54113-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI<sub>3</sub>), fully processed under ambient conditions. PSCs utilising our α-FAPbI<sub>3</sub> reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA<sup>+</sup> in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA<sup>+</sup>-based perovskites can be competitively stable despite the inherent metastability of the α-phase.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54113-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54113-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells
Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI3), fully processed under ambient conditions. PSCs utilising our α-FAPbI3 reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA+ in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA+-based perovskites can be competitively stable despite the inherent metastability of the α-phase.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.