用于加密逻辑运算的基于 MOF 的误差补偿 ReRAM 阵列

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Valentin Milichko, Semen Bachinin, Sergey Rzhevskiy, Ivan Sergeev, Anastasia Lubimova, Varvara Haritonova, Alena N. Kulakova, Sviatoslav A. Povarov
{"title":"用于加密逻辑运算的基于 MOF 的误差补偿 ReRAM 阵列","authors":"Valentin Milichko, Semen Bachinin, Sergey Rzhevskiy, Ivan Sergeev, Anastasia Lubimova, Varvara Haritonova, Alena N. Kulakova, Sviatoslav A. Povarov","doi":"10.1039/d4dt02880e","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) form a unique platform for operating with data using ReRAM technology. Here we report on a large-scale fabrication of MOF-based ReRAM array with 6x6 cells, demonstrating 50 % variation of their electronic parameters. Despite this inhomogeneity, such \"non-ideal\" ReRAM array is used for recording binary information followed by deep learning processes to achieve 95 % of accuracy of reading. Next, the same ReRAM array is used to record the numbers (from 0 to 15) followed by the operation of addition. For the correct performance of such analogous algorithm, we determine a set of unique coefficients for each ReRAM cell, allowing us to use this set than as an encrypted key to get an access to logical operations. The obtained results, thereby, demonstrate the possibility of \"non-ideal\" MOF-based ReRAM for low error reading of information coupled with an encrypted logical operations.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"38 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error compensated MOF-based ReRAM array for encrypted logical operations\",\"authors\":\"Valentin Milichko, Semen Bachinin, Sergey Rzhevskiy, Ivan Sergeev, Anastasia Lubimova, Varvara Haritonova, Alena N. Kulakova, Sviatoslav A. Povarov\",\"doi\":\"10.1039/d4dt02880e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-organic frameworks (MOFs) form a unique platform for operating with data using ReRAM technology. Here we report on a large-scale fabrication of MOF-based ReRAM array with 6x6 cells, demonstrating 50 % variation of their electronic parameters. Despite this inhomogeneity, such \\\"non-ideal\\\" ReRAM array is used for recording binary information followed by deep learning processes to achieve 95 % of accuracy of reading. Next, the same ReRAM array is used to record the numbers (from 0 to 15) followed by the operation of addition. For the correct performance of such analogous algorithm, we determine a set of unique coefficients for each ReRAM cell, allowing us to use this set than as an encrypted key to get an access to logical operations. The obtained results, thereby, demonstrate the possibility of \\\"non-ideal\\\" MOF-based ReRAM for low error reading of information coupled with an encrypted logical operations.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4dt02880e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02880e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架 (MOF) 是利用 ReRAM 技术处理数据的独特平台。在此,我们报告了基于 MOF 的 6x6 单元 ReRAM 阵列的大规模制造过程,其电子参数变化率为 50%。尽管存在这种不均匀性,这种 "非理想 "ReRAM 阵列仍可用于记录二进制信息,然后通过深度学习过程实现 95% 的读取准确率。接下来,同样的 ReRAM 阵列用于记录数字(从 0 到 15),然后进行加法运算。为了正确执行这种类比算法,我们为每个 ReRAM 单元确定了一组唯一的系数,这样我们就可以将这组系数作为加密密钥来访问逻辑运算。因此,所获得的结果证明了基于 MOF 的 ReRAM 的 "非理想 "可能性,可用于低误差读取信息并进行加密逻辑运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error compensated MOF-based ReRAM array for encrypted logical operations
Metal-organic frameworks (MOFs) form a unique platform for operating with data using ReRAM technology. Here we report on a large-scale fabrication of MOF-based ReRAM array with 6x6 cells, demonstrating 50 % variation of their electronic parameters. Despite this inhomogeneity, such "non-ideal" ReRAM array is used for recording binary information followed by deep learning processes to achieve 95 % of accuracy of reading. Next, the same ReRAM array is used to record the numbers (from 0 to 15) followed by the operation of addition. For the correct performance of such analogous algorithm, we determine a set of unique coefficients for each ReRAM cell, allowing us to use this set than as an encrypted key to get an access to logical operations. The obtained results, thereby, demonstrate the possibility of "non-ideal" MOF-based ReRAM for low error reading of information coupled with an encrypted logical operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信