利用代谢测量法测量不规则空腔中的常规荡流模式

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Adam Anglart, Agnès Maurel, Philippe Petitjeans, Vincent Pagneux
{"title":"利用代谢测量法测量不规则空腔中的常规荡流模式","authors":"Adam Anglart, Agnès Maurel, Philippe Petitjeans, Vincent Pagneux","doi":"10.1063/5.0223974","DOIUrl":null,"url":null,"abstract":"We present a comprehensive investigation, combining numerical simulations and experimental measurements, into the manipulation of water waves and resonance characteristics within closed cavities utilizing anisotropic metamaterials. We engineer the anisotropic media with subwavelength-scale layered bathymetry through the application of coordinate transformation theory and the homogenization technique to a fully three-dimensional linear water wave problem. Experimental and numerical analyses of deformed cavities employing anisotropic metamaterial bathymetry demonstrate regular sloshing mode patterns and eigenfrequencies akin to those observed in rectangular reference cavities with flat bathymetry. Our study underscores the potential of water wave metamaterials for establishing robust anisotropic metabathymetry for the precise control of sloshing modes.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"17 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular sloshing modes in irregular cavities using metabathymetry\",\"authors\":\"Adam Anglart, Agnès Maurel, Philippe Petitjeans, Vincent Pagneux\",\"doi\":\"10.1063/5.0223974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a comprehensive investigation, combining numerical simulations and experimental measurements, into the manipulation of water waves and resonance characteristics within closed cavities utilizing anisotropic metamaterials. We engineer the anisotropic media with subwavelength-scale layered bathymetry through the application of coordinate transformation theory and the homogenization technique to a fully three-dimensional linear water wave problem. Experimental and numerical analyses of deformed cavities employing anisotropic metamaterial bathymetry demonstrate regular sloshing mode patterns and eigenfrequencies akin to those observed in rectangular reference cavities with flat bathymetry. Our study underscores the potential of water wave metamaterials for establishing robust anisotropic metabathymetry for the precise control of sloshing modes.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223974\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223974","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们结合数值模拟和实验测量,对利用各向异性超材料操纵封闭空腔内的水波和共振特性进行了全面研究。通过将坐标变换理论和均质化技术应用于完全三维线性水波问题,我们设计了具有亚波长尺度分层水深的各向异性介质。对采用各向异性超材料水深的变形空腔进行的实验和数值分析表明,其规则的荡流模式和特征频率与在具有平坦水深的矩形参考空腔中观察到的模式和特征频率相似。我们的研究强调了水波超材料在建立稳健的各向异性超材料水深测量以精确控制荡波模式方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular sloshing modes in irregular cavities using metabathymetry
We present a comprehensive investigation, combining numerical simulations and experimental measurements, into the manipulation of water waves and resonance characteristics within closed cavities utilizing anisotropic metamaterials. We engineer the anisotropic media with subwavelength-scale layered bathymetry through the application of coordinate transformation theory and the homogenization technique to a fully three-dimensional linear water wave problem. Experimental and numerical analyses of deformed cavities employing anisotropic metamaterial bathymetry demonstrate regular sloshing mode patterns and eigenfrequencies akin to those observed in rectangular reference cavities with flat bathymetry. Our study underscores the potential of water wave metamaterials for establishing robust anisotropic metabathymetry for the precise control of sloshing modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信