{"title":"弹性基底附近的声力","authors":"V. Kleshchenko, K. Albitskaya, M. Petrov","doi":"10.1063/5.0233891","DOIUrl":null,"url":null,"abstract":"In this work, we study the acoustic forces acting on particles due to sound scattering at the interface with an elastic substrate. Utilizing the Green's function formalism, we predict that excitation of a leaking Rayleigh wave results in a strong modification of the acoustic pressure force acting on a monopole scatterer and changes the equilibrium position of particles above the substrate surface. We also showed that the presence of a substrate changes the configuration of the acoustical binding of two particles due to multiple rescattering of acoustic waves from the interface. The reported results propose the method of acoustic manipulation via surface wave excitation and demonstrate the effect of elastic media in acoustical trapping of micro-objects.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic forces near elastic substrate\",\"authors\":\"V. Kleshchenko, K. Albitskaya, M. Petrov\",\"doi\":\"10.1063/5.0233891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the acoustic forces acting on particles due to sound scattering at the interface with an elastic substrate. Utilizing the Green's function formalism, we predict that excitation of a leaking Rayleigh wave results in a strong modification of the acoustic pressure force acting on a monopole scatterer and changes the equilibrium position of particles above the substrate surface. We also showed that the presence of a substrate changes the configuration of the acoustical binding of two particles due to multiple rescattering of acoustic waves from the interface. The reported results propose the method of acoustic manipulation via surface wave excitation and demonstrate the effect of elastic media in acoustical trapping of micro-objects.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233891\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0233891","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
In this work, we study the acoustic forces acting on particles due to sound scattering at the interface with an elastic substrate. Utilizing the Green's function formalism, we predict that excitation of a leaking Rayleigh wave results in a strong modification of the acoustic pressure force acting on a monopole scatterer and changes the equilibrium position of particles above the substrate surface. We also showed that the presence of a substrate changes the configuration of the acoustical binding of two particles due to multiple rescattering of acoustic waves from the interface. The reported results propose the method of acoustic manipulation via surface wave excitation and demonstrate the effect of elastic media in acoustical trapping of micro-objects.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.