利用巨型压电无铅 KNNS 复合材料制造下一代混合纳米发电机,实现可持续的自供电电子器件

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Rattiphorn Sumang, Thitirat Charoonsuk, Theerachai Bongkarn, Te-Wei Chiu, Naratip Vittayakorn, Phakakorn Panpho
{"title":"利用巨型压电无铅 KNNS 复合材料制造下一代混合纳米发电机,实现可持续的自供电电子器件","authors":"Rattiphorn Sumang, Thitirat Charoonsuk, Theerachai Bongkarn, Te-Wei Chiu, Naratip Vittayakorn, Phakakorn Panpho","doi":"10.1016/j.jallcom.2024.177681","DOIUrl":null,"url":null,"abstract":"This study presents a flexible hybrid nanogenerator that utilizes lead-free KNNS-BF-<em>x</em>BNZ materials integrated with polydimethylsiloxane (PDMS) to enhance energy harvesting performance. The findings demonstrate that by combining piezoelectric and triboelectric effects, the energy conversion efficiency of the nanogenerator is significantly improved, resulting in high output voltage and current, suitable for real-world applications. Specifically, the optimal composition of KNNS-BF-xBNZ ceramics, with <em>x</em> = 0.03<!-- --> <!-- -->mol.%, yields superior piezoelectric, ferroelectric, and dielectric properties, with remnant polarization (<em>P</em><sub>r</sub>), spontaneous polarization (<em>P</em><sub>s</sub>), and piezoelectric coefficient (<em>d</em><sub>33</sub>) values reaching 18.8 μmC/cm², 30.3 μmC/cm², and 358 pC/N, respectively. In the hybrid device, incorporating 15<!-- --> <!-- -->wt.% of KNNS-BF-3BNZ into PDMS resulted in the highest open-circuit voltage (<em>V</em><sub>OC</sub>) of 107<!-- --> <!-- -->V and short-circuit current (<em>I</em><sub>SC</sub>) of 4.68 μA. The developed hybrid nanogenerator effectively charges capacitors for energy storage, powers LEDs, and drives small electronic devices, such as watches, showcasing its potential for practical energy harvesting applications. The findings suggest that the integration of KNNS-BF-3BNZ with PDMS provides an efficient and scalable pathway for fabricating high-performance nanogenerators, paving the way for advancements in self-powered devices and sustainable energy solutions.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"19 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-Generation Hybrid Nanogenerators Using Giant Piezoelectric Lead-Free KNNS Composites for Sustainable Self-Powered Electronics\",\"authors\":\"Rattiphorn Sumang, Thitirat Charoonsuk, Theerachai Bongkarn, Te-Wei Chiu, Naratip Vittayakorn, Phakakorn Panpho\",\"doi\":\"10.1016/j.jallcom.2024.177681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a flexible hybrid nanogenerator that utilizes lead-free KNNS-BF-<em>x</em>BNZ materials integrated with polydimethylsiloxane (PDMS) to enhance energy harvesting performance. The findings demonstrate that by combining piezoelectric and triboelectric effects, the energy conversion efficiency of the nanogenerator is significantly improved, resulting in high output voltage and current, suitable for real-world applications. Specifically, the optimal composition of KNNS-BF-xBNZ ceramics, with <em>x</em> = 0.03<!-- --> <!-- -->mol.%, yields superior piezoelectric, ferroelectric, and dielectric properties, with remnant polarization (<em>P</em><sub>r</sub>), spontaneous polarization (<em>P</em><sub>s</sub>), and piezoelectric coefficient (<em>d</em><sub>33</sub>) values reaching 18.8 μmC/cm², 30.3 μmC/cm², and 358 pC/N, respectively. In the hybrid device, incorporating 15<!-- --> <!-- -->wt.% of KNNS-BF-3BNZ into PDMS resulted in the highest open-circuit voltage (<em>V</em><sub>OC</sub>) of 107<!-- --> <!-- -->V and short-circuit current (<em>I</em><sub>SC</sub>) of 4.68 μA. The developed hybrid nanogenerator effectively charges capacitors for energy storage, powers LEDs, and drives small electronic devices, such as watches, showcasing its potential for practical energy harvesting applications. The findings suggest that the integration of KNNS-BF-3BNZ with PDMS provides an efficient and scalable pathway for fabricating high-performance nanogenerators, paving the way for advancements in self-powered devices and sustainable energy solutions.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177681\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177681","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种柔性混合纳米发电机,它利用无铅 KNNS-BF-xBNZ 材料与聚二甲基硅氧烷 (PDMS) 集成来提高能量收集性能。研究结果表明,通过结合压电效应和三电效应,纳米发电机的能量转换效率得到了显著提高,从而产生了适合实际应用的高输出电压和电流。具体来说,KNNS-BF-xBNZ 陶瓷的最佳成分 x = 0.03 mol.%,可产生优异的压电、铁电和介电特性,残余极化 (Pr)、自发极化 (Ps) 和压电系数 (d33) 值分别达到 18.8 μmC/cm²、30.3 μmC/cm² 和 358 pC/N。在混合器件中,将 15 wt.% 的 KNNS-BF-3BNZ 加入 PDMS 后,最高开路电压 (VOC) 为 107 V,短路电流 (ISC) 为 4.68 μA。所开发的混合纳米发电机可有效地为用于储能的电容器充电、为 LED 供电以及驱动手表等小型电子设备,从而展示了其在实际能量收集应用中的潜力。研究结果表明,KNNS-BF-3BNZ 与 PDMS 的集成为制造高性能纳米发电机提供了一条高效且可扩展的途径,为推动自供电设备和可持续能源解决方案的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-Generation Hybrid Nanogenerators Using Giant Piezoelectric Lead-Free KNNS Composites for Sustainable Self-Powered Electronics
This study presents a flexible hybrid nanogenerator that utilizes lead-free KNNS-BF-xBNZ materials integrated with polydimethylsiloxane (PDMS) to enhance energy harvesting performance. The findings demonstrate that by combining piezoelectric and triboelectric effects, the energy conversion efficiency of the nanogenerator is significantly improved, resulting in high output voltage and current, suitable for real-world applications. Specifically, the optimal composition of KNNS-BF-xBNZ ceramics, with x = 0.03 mol.%, yields superior piezoelectric, ferroelectric, and dielectric properties, with remnant polarization (Pr), spontaneous polarization (Ps), and piezoelectric coefficient (d33) values reaching 18.8 μmC/cm², 30.3 μmC/cm², and 358 pC/N, respectively. In the hybrid device, incorporating 15 wt.% of KNNS-BF-3BNZ into PDMS resulted in the highest open-circuit voltage (VOC) of 107 V and short-circuit current (ISC) of 4.68 μA. The developed hybrid nanogenerator effectively charges capacitors for energy storage, powers LEDs, and drives small electronic devices, such as watches, showcasing its potential for practical energy harvesting applications. The findings suggest that the integration of KNNS-BF-3BNZ with PDMS provides an efficient and scalable pathway for fabricating high-performance nanogenerators, paving the way for advancements in self-powered devices and sustainable energy solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信