{"title":"将 O2 吸附溶解到致密氟化金属有机框架的潜在纳米空间中","authors":"Shinpei Kusaka, Yuh Itoh, Akihiro Hori, Junichi Usuba, Jenny Pirillo, Yuh Hijikata, Yunsheng Ma, Ryotaro Matsuda","doi":"10.1038/s41467-024-54391-y","DOIUrl":null,"url":null,"abstract":"<p>Nanoporous solids, including metal-organic frameworks (MOFs), have long been known to capture small molecules by adsorption on their pore surfaces. Liquids are also known to accommodate small molecules by dissolution. These two processes have been recognized as fundamentally distinct phenomena because of the different nature of the medium—solids and liquids. Here, we report a dissolution-like gas accommodation so-called “adsorptive-dissolution” behavior in a MOF (PFAC-2) with pores densely filled with perfluoroalkyl chains. PFAC-2 does not have solvent-accessible voids; nevertheless, it captures oxygen molecules without changing the framework structure, analogous to molecular dissolution into liquids. Moreover, we demonstrate the selective capture of O<sub>2</sub> by PFAC-2 in a mixture of O<sub>2</sub> and Ar, which are difficult to separate due to their similarities such as boiling point and molecular size. Our results show the integration of molecular adsorption into nanospaces and dissolution into fluorous solvents, which can guide the design of crystalline adsorbents for selective molecular trapping and gas separation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorptive-dissolution of O2 into the potential nanospace of a densely fluorinated metal-organic framework\",\"authors\":\"Shinpei Kusaka, Yuh Itoh, Akihiro Hori, Junichi Usuba, Jenny Pirillo, Yuh Hijikata, Yunsheng Ma, Ryotaro Matsuda\",\"doi\":\"10.1038/s41467-024-54391-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoporous solids, including metal-organic frameworks (MOFs), have long been known to capture small molecules by adsorption on their pore surfaces. Liquids are also known to accommodate small molecules by dissolution. These two processes have been recognized as fundamentally distinct phenomena because of the different nature of the medium—solids and liquids. Here, we report a dissolution-like gas accommodation so-called “adsorptive-dissolution” behavior in a MOF (PFAC-2) with pores densely filled with perfluoroalkyl chains. PFAC-2 does not have solvent-accessible voids; nevertheless, it captures oxygen molecules without changing the framework structure, analogous to molecular dissolution into liquids. Moreover, we demonstrate the selective capture of O<sub>2</sub> by PFAC-2 in a mixture of O<sub>2</sub> and Ar, which are difficult to separate due to their similarities such as boiling point and molecular size. Our results show the integration of molecular adsorption into nanospaces and dissolution into fluorous solvents, which can guide the design of crystalline adsorbents for selective molecular trapping and gas separation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54391-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54391-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Adsorptive-dissolution of O2 into the potential nanospace of a densely fluorinated metal-organic framework
Nanoporous solids, including metal-organic frameworks (MOFs), have long been known to capture small molecules by adsorption on their pore surfaces. Liquids are also known to accommodate small molecules by dissolution. These two processes have been recognized as fundamentally distinct phenomena because of the different nature of the medium—solids and liquids. Here, we report a dissolution-like gas accommodation so-called “adsorptive-dissolution” behavior in a MOF (PFAC-2) with pores densely filled with perfluoroalkyl chains. PFAC-2 does not have solvent-accessible voids; nevertheless, it captures oxygen molecules without changing the framework structure, analogous to molecular dissolution into liquids. Moreover, we demonstrate the selective capture of O2 by PFAC-2 in a mixture of O2 and Ar, which are difficult to separate due to their similarities such as boiling point and molecular size. Our results show the integration of molecular adsorption into nanospaces and dissolution into fluorous solvents, which can guide the design of crystalline adsorbents for selective molecular trapping and gas separation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.