壳聚糖功能化氧化铁锂纳米粒子在磁热疗中的应用

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Amol B. Pandhare, Swapnajit V. Mulik, Dhanaji B. Malavekar, Jin H. Kim, Vishwajeet. M. Khot, Pawan Kumar, Santosh S. Sutar, Tukaram D. Dongale, Rajendra P. Patil, Sagar D. Delekar
{"title":"壳聚糖功能化氧化铁锂纳米粒子在磁热疗中的应用","authors":"Amol B. Pandhare, Swapnajit V. Mulik, Dhanaji B. Malavekar, Jin H. Kim, Vishwajeet. M. Khot, Pawan Kumar, Santosh S. Sutar, Tukaram D. Dongale, Rajendra P. Patil, Sagar D. Delekar","doi":"10.1021/acs.langmuir.4c03228","DOIUrl":null,"url":null,"abstract":"In this study, various compositions of α-Fe<sub>2</sub>O<sub>3</sub>, Li<sub>3<i>x</i></sub>Fe<sub>2-x</sub>O<sub>3</sub>, where <i>x</i> = 0.1, 0.3, and 0.5, along with chitosan (CTS)-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> nanomaterials (NMs), were synthesized using a sol–gel method. Rietveld refinement analysis indicated a predominance of the rhombohedral phase for lower Li-doped content (<i>x</i> = 0.1) and a transition to cubic crystal structures at higher Li-doped content (<i>x</i> = 0.3 and 0.5) within the host lattice. Field emission scanning electron microscopy (FE-SEM) images revealed irregular spherical morphologies, while transmission electron microscopy (TEM) images showed average particle sizes ranging from 19 to 40 nm across the various NMs. Superconducting quantum interference device (SQUID) analysis demonstrated a ferromagnetic nature with the highest saturation magnetization measured at 49.84 emu/g for Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs. X-ray photoelectron spectra (XPS) exhibited Fe 2p<sub>3/2</sub> and Fe 2p<sub>1/2</sub> peaks at 712.60 and 726.13 eV, respectively, Li 1s at 57.58 eV, and O 1s at 533.44 eV for the representative samples; these characteristic XPS peaks shifted to a lower binding energy for CTS-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs. Hyperthermia studies demonstrated that the Li-doped samples reached a temperature range between 42 and 44 °C under an alternating current (AC) magnetic field applied at 167.6 to 335.2 Oe, with a constant frequency of 278 kHz. The specific absorption rate (SAR) was recorded as 265.11 W/g for Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> and 153.48 W/g for CTS-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs, both surpassing the SAR values of the other samples. Furthermore, various machine learning techniques were utilized to analyze how different synthesis conditions and material properties affected the heating efficiency and SAR values of the synthesized materials. The study also suggests an optimized set of guidelines and heuristics to enhance the heating performance and SAR values of these materials. Finally, magnetic CTS-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs exhibited a higher cell viability, as confirmed by MTT assays conducted on the NRK 52 E normal cell line.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"12 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan-Functionalized Lithium Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications\",\"authors\":\"Amol B. Pandhare, Swapnajit V. Mulik, Dhanaji B. Malavekar, Jin H. Kim, Vishwajeet. M. Khot, Pawan Kumar, Santosh S. Sutar, Tukaram D. Dongale, Rajendra P. Patil, Sagar D. Delekar\",\"doi\":\"10.1021/acs.langmuir.4c03228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, various compositions of α-Fe<sub>2</sub>O<sub>3</sub>, Li<sub>3<i>x</i></sub>Fe<sub>2-x</sub>O<sub>3</sub>, where <i>x</i> = 0.1, 0.3, and 0.5, along with chitosan (CTS)-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> nanomaterials (NMs), were synthesized using a sol–gel method. Rietveld refinement analysis indicated a predominance of the rhombohedral phase for lower Li-doped content (<i>x</i> = 0.1) and a transition to cubic crystal structures at higher Li-doped content (<i>x</i> = 0.3 and 0.5) within the host lattice. Field emission scanning electron microscopy (FE-SEM) images revealed irregular spherical morphologies, while transmission electron microscopy (TEM) images showed average particle sizes ranging from 19 to 40 nm across the various NMs. Superconducting quantum interference device (SQUID) analysis demonstrated a ferromagnetic nature with the highest saturation magnetization measured at 49.84 emu/g for Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs. X-ray photoelectron spectra (XPS) exhibited Fe 2p<sub>3/2</sub> and Fe 2p<sub>1/2</sub> peaks at 712.60 and 726.13 eV, respectively, Li 1s at 57.58 eV, and O 1s at 533.44 eV for the representative samples; these characteristic XPS peaks shifted to a lower binding energy for CTS-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs. Hyperthermia studies demonstrated that the Li-doped samples reached a temperature range between 42 and 44 °C under an alternating current (AC) magnetic field applied at 167.6 to 335.2 Oe, with a constant frequency of 278 kHz. The specific absorption rate (SAR) was recorded as 265.11 W/g for Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> and 153.48 W/g for CTS-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs, both surpassing the SAR values of the other samples. Furthermore, various machine learning techniques were utilized to analyze how different synthesis conditions and material properties affected the heating efficiency and SAR values of the synthesized materials. The study also suggests an optimized set of guidelines and heuristics to enhance the heating performance and SAR values of these materials. Finally, magnetic CTS-coated Li<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>3</sub> NMs exhibited a higher cell viability, as confirmed by MTT assays conducted on the NRK 52 E normal cell line.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03228\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03228","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用溶胶-凝胶法合成了不同成分的 α-Fe2O3、Li3xFe2-xO3(其中 x = 0.1、0.3 和 0.5)以及壳聚糖(CTS)包覆的 Li1.5Fe1.5O3 纳米材料(NMs)。里特维尔德细化分析表明,掺杂锂元素含量较低时(x = 0.1),斜方晶相占主导地位;掺杂锂元素含量较高时(x = 0.3 和 0.5),主晶格内的晶体结构过渡到立方晶相。场发射扫描电子显微镜(FE-SEM)图像显示了不规则的球形形态,而透射电子显微镜(TEM)图像则显示了各种 NM 的平均粒径为 19 至 40 纳米。超导量子干涉装置(SQUID)分析表明,Li1.5Fe1.5O3 NMs 具有铁磁性,测量到的最高饱和磁化率为 49.84 emu/g。代表性样品的 X 射线光电子能谱(XPS)显示,Fe 2p3/2 和 Fe 2p1/2 峰值分别为 712.60 和 726.13 eV,Li 1s 峰值为 57.58 eV,O 1s 峰值为 533.44 eV;CTS 涂层 Li1.5Fe1.5O3 NMs 的这些特征 XPS 峰值转移到了较低的结合能。高热研究表明,在 167.6 至 335.2 Oe、频率恒定为 278 kHz 的交流磁场作用下,掺锂样品的温度范围在 42 至 44 ℃ 之间。根据记录,Li1.5Fe1.5O3 的比吸收率(SAR)为 265.11 W/g,CTS 涂层 Li1.5Fe1.5O3 NMs 的比吸收率(SAR)为 153.48 W/g,均超过了其他样品的比吸收率值。此外,还利用各种机器学习技术分析了不同的合成条件和材料特性如何影响合成材料的加热效率和 SAR 值。研究还提出了一套优化指南和启发式方法,以提高这些材料的加热性能和 SAR 值。最后,磁性 CTS 涂层 Li1.5Fe1.5O3 NMs 表现出更高的细胞存活率,在 NRK 52 E 正常细胞系上进行的 MTT 检测证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chitosan-Functionalized Lithium Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications

Chitosan-Functionalized Lithium Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
In this study, various compositions of α-Fe2O3, Li3xFe2-xO3, where x = 0.1, 0.3, and 0.5, along with chitosan (CTS)-coated Li1.5Fe1.5O3 nanomaterials (NMs), were synthesized using a sol–gel method. Rietveld refinement analysis indicated a predominance of the rhombohedral phase for lower Li-doped content (x = 0.1) and a transition to cubic crystal structures at higher Li-doped content (x = 0.3 and 0.5) within the host lattice. Field emission scanning electron microscopy (FE-SEM) images revealed irregular spherical morphologies, while transmission electron microscopy (TEM) images showed average particle sizes ranging from 19 to 40 nm across the various NMs. Superconducting quantum interference device (SQUID) analysis demonstrated a ferromagnetic nature with the highest saturation magnetization measured at 49.84 emu/g for Li1.5Fe1.5O3 NMs. X-ray photoelectron spectra (XPS) exhibited Fe 2p3/2 and Fe 2p1/2 peaks at 712.60 and 726.13 eV, respectively, Li 1s at 57.58 eV, and O 1s at 533.44 eV for the representative samples; these characteristic XPS peaks shifted to a lower binding energy for CTS-coated Li1.5Fe1.5O3 NMs. Hyperthermia studies demonstrated that the Li-doped samples reached a temperature range between 42 and 44 °C under an alternating current (AC) magnetic field applied at 167.6 to 335.2 Oe, with a constant frequency of 278 kHz. The specific absorption rate (SAR) was recorded as 265.11 W/g for Li1.5Fe1.5O3 and 153.48 W/g for CTS-coated Li1.5Fe1.5O3 NMs, both surpassing the SAR values of the other samples. Furthermore, various machine learning techniques were utilized to analyze how different synthesis conditions and material properties affected the heating efficiency and SAR values of the synthesized materials. The study also suggests an optimized set of guidelines and heuristics to enhance the heating performance and SAR values of these materials. Finally, magnetic CTS-coated Li1.5Fe1.5O3 NMs exhibited a higher cell viability, as confirmed by MTT assays conducted on the NRK 52 E normal cell line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信