Svetlana Vihodceva, Andris Šutka, Mairis Iesalnieks, Liga Orlova, Arturs Pludonis, Maarja Otsus, Mariliis Sihtmäe, Heiki Vija, Alexandra Nefedova, Angela Ivask, Anne Kahru, Kaja Kasemets
{"title":"新晋研究人员系列:CeO2/CuO 纳米结构复合材料在体外具有更强的抗菌性能和对人类角质细胞的低细胞毒性","authors":"Svetlana Vihodceva, Andris Šutka, Mairis Iesalnieks, Liga Orlova, Arturs Pludonis, Maarja Otsus, Mariliis Sihtmäe, Heiki Vija, Alexandra Nefedova, Angela Ivask, Anne Kahru, Kaja Kasemets","doi":"10.1039/d4en00501e","DOIUrl":null,"url":null,"abstract":"This research presents a synthesis method for the CeO<small><sub>2</sub></small>/CuO nanostructured composite, which has potential applications as an antimicrobial material in the production of antimicrobial surface coatings, for example, for high-touch surfaces. The antimicrobial efficacy, mode of action, and potential cytotoxicity of CeO<small><sub>2</sub></small>/CuO towards the human immortalized keratinocyte cell line <em>in vitro</em> were studied compared to those of CuO, CeO<small><sub>2</sub></small>, and ionic Cu (a solubility control). The used synthesis method resulted in a CeO<small><sub>2</sub></small>/CuO nanostructured composite with a mean particle size of 27 nm and a specific surface area of 80.3 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. The composite had a significant proportion (54%) of non-lattice oxygen species, highlighting the presence of substantial surface defects crucial for generating reactive oxygen species (ROS). The antimicrobial properties of CeO<small><sub>2</sub></small>/CuO, CuO, and CeO<small><sub>2</sub></small> were assessed at six concentrations from 1 to 1000 mg L<small><sup>−1</sup></small> in deionized water. The CeO<small><sub>2</sub></small>/CuO composite exhibited antibacterial efficacy at a minimum bactericidal concentration (MBC) of 100 mg L<small><sup>−1</sup></small> towards <em>Escherichia coli</em> already after 2 h of contact and towards <em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em> after 4 h of contact, whereas after 24 h of exposure, the antibacterial efficacy to all three bacterial strains was evident already at a MBC = 10 mg L<small><sup>−1</sup></small>. Fungi <em>Candida albicans</em> proved less susceptible than bacteria (24 h MBC = 100 mg L<small><sup>−1</sup></small>). Thus, the CeO<small><sub>2</sub></small>/CuO composite showed significant antibacterial efficacy against Gram-negative and Gram-positive bacteria, being at the same time safe to human keratinocytes <em>in vitro</em> in the case of which even 1000 mg L<small><sup>−1</sup></small> caused no harmful effects after 2 h exposure and 500 mg L<small><sup>−1</sup></small> caused no cytotoxicity after 24 h exposure. CeO<small><sub>2</sub></small>/CuO caused abiotic and biotic ROS production in all the tested environments. ROS production in deionized water was the most remarkable. Shedding of Cu-ions from CeO<small><sub>2</sub></small>/CuO was moderate and depended on the test environment, varying from 0.3 to 1 mg L<small><sup>−1</sup></small>, and considering the MBC of ionic Cu for microorganisms was not the main contributor to the antimicrobial activity of CeO<small><sub>2</sub></small>/CuO. The CeO<small><sub>2</sub></small>/CuO composite exhibited no acute toxicity to the environmentally relevant bacterium <em>Vibrio fischeri</em>. These findings indicate that CeO<small><sub>2</sub></small>/CuO's high ROS production is its primary antimicrobial mechanism and that due to its low cytotoxicity to human keratinocytes, it can be considered a promising antimicrobial agent.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"34 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging investigator series: CeO2/CuO nanostructured composite with enhanced antimicrobial properties and low cytotoxicity to human keratinocytes in vitro\",\"authors\":\"Svetlana Vihodceva, Andris Šutka, Mairis Iesalnieks, Liga Orlova, Arturs Pludonis, Maarja Otsus, Mariliis Sihtmäe, Heiki Vija, Alexandra Nefedova, Angela Ivask, Anne Kahru, Kaja Kasemets\",\"doi\":\"10.1039/d4en00501e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a synthesis method for the CeO<small><sub>2</sub></small>/CuO nanostructured composite, which has potential applications as an antimicrobial material in the production of antimicrobial surface coatings, for example, for high-touch surfaces. The antimicrobial efficacy, mode of action, and potential cytotoxicity of CeO<small><sub>2</sub></small>/CuO towards the human immortalized keratinocyte cell line <em>in vitro</em> were studied compared to those of CuO, CeO<small><sub>2</sub></small>, and ionic Cu (a solubility control). The used synthesis method resulted in a CeO<small><sub>2</sub></small>/CuO nanostructured composite with a mean particle size of 27 nm and a specific surface area of 80.3 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. The composite had a significant proportion (54%) of non-lattice oxygen species, highlighting the presence of substantial surface defects crucial for generating reactive oxygen species (ROS). The antimicrobial properties of CeO<small><sub>2</sub></small>/CuO, CuO, and CeO<small><sub>2</sub></small> were assessed at six concentrations from 1 to 1000 mg L<small><sup>−1</sup></small> in deionized water. The CeO<small><sub>2</sub></small>/CuO composite exhibited antibacterial efficacy at a minimum bactericidal concentration (MBC) of 100 mg L<small><sup>−1</sup></small> towards <em>Escherichia coli</em> already after 2 h of contact and towards <em>Pseudomonas aeruginosa</em> and <em>Staphylococcus aureus</em> after 4 h of contact, whereas after 24 h of exposure, the antibacterial efficacy to all three bacterial strains was evident already at a MBC = 10 mg L<small><sup>−1</sup></small>. Fungi <em>Candida albicans</em> proved less susceptible than bacteria (24 h MBC = 100 mg L<small><sup>−1</sup></small>). Thus, the CeO<small><sub>2</sub></small>/CuO composite showed significant antibacterial efficacy against Gram-negative and Gram-positive bacteria, being at the same time safe to human keratinocytes <em>in vitro</em> in the case of which even 1000 mg L<small><sup>−1</sup></small> caused no harmful effects after 2 h exposure and 500 mg L<small><sup>−1</sup></small> caused no cytotoxicity after 24 h exposure. CeO<small><sub>2</sub></small>/CuO caused abiotic and biotic ROS production in all the tested environments. ROS production in deionized water was the most remarkable. Shedding of Cu-ions from CeO<small><sub>2</sub></small>/CuO was moderate and depended on the test environment, varying from 0.3 to 1 mg L<small><sup>−1</sup></small>, and considering the MBC of ionic Cu for microorganisms was not the main contributor to the antimicrobial activity of CeO<small><sub>2</sub></small>/CuO. The CeO<small><sub>2</sub></small>/CuO composite exhibited no acute toxicity to the environmentally relevant bacterium <em>Vibrio fischeri</em>. These findings indicate that CeO<small><sub>2</sub></small>/CuO's high ROS production is its primary antimicrobial mechanism and that due to its low cytotoxicity to human keratinocytes, it can be considered a promising antimicrobial agent.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00501e\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00501e","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Emerging investigator series: CeO2/CuO nanostructured composite with enhanced antimicrobial properties and low cytotoxicity to human keratinocytes in vitro
This research presents a synthesis method for the CeO2/CuO nanostructured composite, which has potential applications as an antimicrobial material in the production of antimicrobial surface coatings, for example, for high-touch surfaces. The antimicrobial efficacy, mode of action, and potential cytotoxicity of CeO2/CuO towards the human immortalized keratinocyte cell line in vitro were studied compared to those of CuO, CeO2, and ionic Cu (a solubility control). The used synthesis method resulted in a CeO2/CuO nanostructured composite with a mean particle size of 27 nm and a specific surface area of 80.3 m2 g−1. The composite had a significant proportion (54%) of non-lattice oxygen species, highlighting the presence of substantial surface defects crucial for generating reactive oxygen species (ROS). The antimicrobial properties of CeO2/CuO, CuO, and CeO2 were assessed at six concentrations from 1 to 1000 mg L−1 in deionized water. The CeO2/CuO composite exhibited antibacterial efficacy at a minimum bactericidal concentration (MBC) of 100 mg L−1 towards Escherichia coli already after 2 h of contact and towards Pseudomonas aeruginosa and Staphylococcus aureus after 4 h of contact, whereas after 24 h of exposure, the antibacterial efficacy to all three bacterial strains was evident already at a MBC = 10 mg L−1. Fungi Candida albicans proved less susceptible than bacteria (24 h MBC = 100 mg L−1). Thus, the CeO2/CuO composite showed significant antibacterial efficacy against Gram-negative and Gram-positive bacteria, being at the same time safe to human keratinocytes in vitro in the case of which even 1000 mg L−1 caused no harmful effects after 2 h exposure and 500 mg L−1 caused no cytotoxicity after 24 h exposure. CeO2/CuO caused abiotic and biotic ROS production in all the tested environments. ROS production in deionized water was the most remarkable. Shedding of Cu-ions from CeO2/CuO was moderate and depended on the test environment, varying from 0.3 to 1 mg L−1, and considering the MBC of ionic Cu for microorganisms was not the main contributor to the antimicrobial activity of CeO2/CuO. The CeO2/CuO composite exhibited no acute toxicity to the environmentally relevant bacterium Vibrio fischeri. These findings indicate that CeO2/CuO's high ROS production is its primary antimicrobial mechanism and that due to its low cytotoxicity to human keratinocytes, it can be considered a promising antimicrobial agent.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis