{"title":"利用含 Ov 的 ZnO@ 富氮多孔碳优化 Fenton-like 反应途径:电子转移和 1O2 触发的非自由基过程","authors":"Zhenfeng Zhang, Tianli Xiong, Haihao Peng, Honglin Zhang, Siying He, Xuran Liu, Yanan Liu, Wenyi Feng, Zhaohui Yang, Weiping Xiong","doi":"10.1039/d4en00749b","DOIUrl":null,"url":null,"abstract":"With the development of persulfate-based Fenton-like catalysis, how to control the PDS reaction pathway is a great challenge. Herein, we prepared catalysts with nitrogen-rich porous carbon (NPC) layers and oxygen vacancy (O<small><sub>v</sub></small>) sites for PDS activation to degrade sulfamethazine (SMZ). Results revealed that the ZnO@NPC/PDS system exhibited only non-radical pathways, which comprised the singlet oxygen (<small><sup>1</sup></small>O<small><sub>2</sub></small>) and electron transfer process. The intrinsic mechanism underlying the production of active species was further verified by comparing the results of the ZnO@NPC/PDS and ZnO@NPC-Etch/PDS systems, Raman analysis and DFT calculations. Adsorption of PDS by carbon layers resulted in the formation of a catalyst–PDS complex, which not only elongated the S–O bond and accelerated the decomposition of PDS to generate <small><sup>1</sup></small>O<small><sub>2</sub></small> but also provided access for electron transfer. Meanwhile, O<small><sub>v</sub></small> sites increased electron density and electron migration strength, which promoted more electron transfer from O<small><sub>v</sub></small>s to PDS molecules through nitrogen-rich porous carbon layers. Moreover, the ZnO@NPC/PDS system could maintain a degradation rate of >90% for SMZ in real water matrixes. T. E. S. T software prediction and toxicity tests were used to investigate environmental implications of degradation intermediates, which showed reduced ecological toxicity compared with SMZ. This work fabricated the ZnO@NPC/PDS system and explored the interaction between nitrogen-rich porous carbon layers and O<small><sub>v</sub></small> to regulate the occurrence of non-radical pathways, which could provide a strategy to control the PDS reaction pathway.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"129 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Fenton-like reaction pathways using Ov-containing ZnO@nitrogen-rich porous carbon: the electron transfer and 1O2 triggered non-radical process\",\"authors\":\"Zhenfeng Zhang, Tianli Xiong, Haihao Peng, Honglin Zhang, Siying He, Xuran Liu, Yanan Liu, Wenyi Feng, Zhaohui Yang, Weiping Xiong\",\"doi\":\"10.1039/d4en00749b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of persulfate-based Fenton-like catalysis, how to control the PDS reaction pathway is a great challenge. Herein, we prepared catalysts with nitrogen-rich porous carbon (NPC) layers and oxygen vacancy (O<small><sub>v</sub></small>) sites for PDS activation to degrade sulfamethazine (SMZ). Results revealed that the ZnO@NPC/PDS system exhibited only non-radical pathways, which comprised the singlet oxygen (<small><sup>1</sup></small>O<small><sub>2</sub></small>) and electron transfer process. The intrinsic mechanism underlying the production of active species was further verified by comparing the results of the ZnO@NPC/PDS and ZnO@NPC-Etch/PDS systems, Raman analysis and DFT calculations. Adsorption of PDS by carbon layers resulted in the formation of a catalyst–PDS complex, which not only elongated the S–O bond and accelerated the decomposition of PDS to generate <small><sup>1</sup></small>O<small><sub>2</sub></small> but also provided access for electron transfer. Meanwhile, O<small><sub>v</sub></small> sites increased electron density and electron migration strength, which promoted more electron transfer from O<small><sub>v</sub></small>s to PDS molecules through nitrogen-rich porous carbon layers. Moreover, the ZnO@NPC/PDS system could maintain a degradation rate of >90% for SMZ in real water matrixes. T. E. S. T software prediction and toxicity tests were used to investigate environmental implications of degradation intermediates, which showed reduced ecological toxicity compared with SMZ. This work fabricated the ZnO@NPC/PDS system and explored the interaction between nitrogen-rich porous carbon layers and O<small><sub>v</sub></small> to regulate the occurrence of non-radical pathways, which could provide a strategy to control the PDS reaction pathway.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00749b\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00749b","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
随着基于过硫酸盐的 Fenton-like 催化技术的发展,如何控制 PDS 反应途径是一个巨大的挑战。在此,我们制备了具有富氮多孔碳(NPC)层和氧空位(Ov)的催化剂,用于活化 PDS 以降解磺胺二甲嘧啶(SMZ)。结果表明,ZnO@NPC/PDS体系只表现出非自由基途径,包括单线态氧(1O2)和电子转移过程。通过比较 ZnO@NPC/PDS 和 ZnO@NPC-Etch/PDS 系统、拉曼分析和 DFT 计算的结果,进一步验证了活性物种产生的内在机制。碳层对 PDS 的吸附导致催化剂-PDS 复合物的形成,这不仅拉长了 S-O 键,加速 PDS 分解生成 1O2,还为电子转移提供了通道。同时,Ov位点增加了电子密度和电子迁移强度,促进了更多电子通过富氮多孔碳层从Ov转移到PDS分子。此外,ZnO@NPC/PDS 系统在实际水基质中对 SMZ 的降解率可达 90%。利用 T. E. S. T 软件预测和毒性测试研究了降解中间产物对环境的影响,结果表明与 SMZ 相比,降解中间产物的生态毒性有所降低。这项工作制备了 ZnO@NPC/PDS 系统,并探索了富氮多孔碳层与 Ov 之间的相互作用,以调节非自由基途径的发生,从而为控制 PDS 反应途径提供了一种策略。
Optimization of Fenton-like reaction pathways using Ov-containing ZnO@nitrogen-rich porous carbon: the electron transfer and 1O2 triggered non-radical process
With the development of persulfate-based Fenton-like catalysis, how to control the PDS reaction pathway is a great challenge. Herein, we prepared catalysts with nitrogen-rich porous carbon (NPC) layers and oxygen vacancy (Ov) sites for PDS activation to degrade sulfamethazine (SMZ). Results revealed that the ZnO@NPC/PDS system exhibited only non-radical pathways, which comprised the singlet oxygen (1O2) and electron transfer process. The intrinsic mechanism underlying the production of active species was further verified by comparing the results of the ZnO@NPC/PDS and ZnO@NPC-Etch/PDS systems, Raman analysis and DFT calculations. Adsorption of PDS by carbon layers resulted in the formation of a catalyst–PDS complex, which not only elongated the S–O bond and accelerated the decomposition of PDS to generate 1O2 but also provided access for electron transfer. Meanwhile, Ov sites increased electron density and electron migration strength, which promoted more electron transfer from Ovs to PDS molecules through nitrogen-rich porous carbon layers. Moreover, the ZnO@NPC/PDS system could maintain a degradation rate of >90% for SMZ in real water matrixes. T. E. S. T software prediction and toxicity tests were used to investigate environmental implications of degradation intermediates, which showed reduced ecological toxicity compared with SMZ. This work fabricated the ZnO@NPC/PDS system and explored the interaction between nitrogen-rich porous carbon layers and Ov to regulate the occurrence of non-radical pathways, which could provide a strategy to control the PDS reaction pathway.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis