基于不保真度估计的量子态层析成像技术

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yong Wang, Lijun Liu, Tong Dou, Li Li and Shuming Cheng
{"title":"基于不保真度估计的量子态层析成像技术","authors":"Yong Wang, Lijun Liu, Tong Dou, Li Li and Shuming Cheng","doi":"10.1088/2058-9565/ad92a4","DOIUrl":null,"url":null,"abstract":"Quantum state tomography is a cornerstone of quantum information technologies to characterize and benchmark quantum systems from measurement statistics. In this work, we present an infidelity-based least-squares estimator, which incorporates the state purity information and provides orders of magnitude higher tomography accuracy than previous ones. It is further enhanced with the randomized toolbox of direct fidelity estimation, making it applicable to large-scale quantum systems. We validate the proposed estimators through extensive experiments conducted on the IBM Qiskit simulator. The results also demonstrate that our estimator admits an infidelity scaling with Pauli sample size N for (nearly) pure states. Further, it enables high-precision pure-state tomography for systems of up to 25-qubit states, given some state priors. Our method provides a novel perspective on the union of underlying tomography technique and state properties estimation.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum state tomography based on infidelity estimation\",\"authors\":\"Yong Wang, Lijun Liu, Tong Dou, Li Li and Shuming Cheng\",\"doi\":\"10.1088/2058-9565/ad92a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state tomography is a cornerstone of quantum information technologies to characterize and benchmark quantum systems from measurement statistics. In this work, we present an infidelity-based least-squares estimator, which incorporates the state purity information and provides orders of magnitude higher tomography accuracy than previous ones. It is further enhanced with the randomized toolbox of direct fidelity estimation, making it applicable to large-scale quantum systems. We validate the proposed estimators through extensive experiments conducted on the IBM Qiskit simulator. The results also demonstrate that our estimator admits an infidelity scaling with Pauli sample size N for (nearly) pure states. Further, it enables high-precision pure-state tomography for systems of up to 25-qubit states, given some state priors. Our method provides a novel perspective on the union of underlying tomography technique and state properties estimation.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad92a4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad92a4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子态层析成像技术是量子信息技术的基石,它可以从测量统计数据中描述量子系统的特征并为其设定基准。在这项工作中,我们提出了一种基于不保真度的最小二乘估计器,它结合了状态纯度信息,比以往的层析准确度高出几个数量级。它通过直接保真度估计的随机工具箱得到了进一步增强,使其适用于大规模量子系统。我们在 IBM Qiskit 模拟器上进行了大量实验,验证了所提出的估计器。实验结果还证明,我们的估计器对于(近乎)纯态的保真度可随保利样本大小 N 而缩放。此外,它还能在给定一些状态先验的情况下,对多达 25 量子比特的系统进行高精度纯态层析。我们的方法为底层层析技术与状态特性估计的结合提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum state tomography based on infidelity estimation
Quantum state tomography is a cornerstone of quantum information technologies to characterize and benchmark quantum systems from measurement statistics. In this work, we present an infidelity-based least-squares estimator, which incorporates the state purity information and provides orders of magnitude higher tomography accuracy than previous ones. It is further enhanced with the randomized toolbox of direct fidelity estimation, making it applicable to large-scale quantum systems. We validate the proposed estimators through extensive experiments conducted on the IBM Qiskit simulator. The results also demonstrate that our estimator admits an infidelity scaling with Pauli sample size N for (nearly) pure states. Further, it enables high-precision pure-state tomography for systems of up to 25-qubit states, given some state priors. Our method provides a novel perspective on the union of underlying tomography technique and state properties estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信