长寿印第安人中与长寿有关的基因变异。

IF 4.1 Q2 GERIATRICS & GERONTOLOGY
Sandhya Kiran Pemmasani, Shakthiraju R G, Suraj V, Raunaq Bhattacharyya, Chetan Patel, Anil Kumar Gupta, Anuradha Acharya
{"title":"长寿印第安人中与长寿有关的基因变异。","authors":"Sandhya Kiran Pemmasani, Shakthiraju R G, Suraj V, Raunaq Bhattacharyya, Chetan Patel, Anil Kumar Gupta, Anuradha Acharya","doi":"10.1038/s41514-024-00179-9","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic factors play a significant role in determining an individual's longevity. The present study was aimed at identifying genetic variants associated with longevity in Indian population. Long living individuals (LLIs), aged 85+, were compared with younger controls, aged 18-49 years, using data from GenomegaDB, a genetic database of Indians living in India. An in-house developed custom chip, having variants associated with various cancers, cardiovascular, neurological, gastro-intestinal, metabolic and auto-immune disorders, was used to generate genotype data. Logistic regression analysis with sex and top three genetic principal components as covariates resulted in 9 variants to be significantly associated with longevity at a p-value threshold of 5 × 10<sup>-4</sup>. Alleles associated with slower heart rate (rs365990, MYH6), decreased risk of osteoporosis and short body height (rs2982570, ESR1), decreased risk of schizophrenia (rs1339227, RIMS1-KCNQ5) and decreased risk of anxiety and neuroticism (rs391957, HSPA5) were found to have higher frequency in LLIs. Alleles associated with increased risk of atrial fibrillation (rs3903239, GORAB-PRRX1) and biliary disorders (rs2002042, ABCC2) were found to have lower frequency. The G allele of rs2802292 from FOXO3A gene, associated with longevity in Japanese, German and French centenarians, was also found to be significant in this population (P = 0.032). Pathway enrichment analysis revealed that the genes involved in oxidative stress, apoptosis, DNA damage repair, glucose metabolism and energy metabolism were significantly involved in affecting the longevity. Results of our study demonstrate the genetic basis of healthy aging and longevity in the population.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"51"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579347/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic variants associated with longevity in long-living Indians.\",\"authors\":\"Sandhya Kiran Pemmasani, Shakthiraju R G, Suraj V, Raunaq Bhattacharyya, Chetan Patel, Anil Kumar Gupta, Anuradha Acharya\",\"doi\":\"10.1038/s41514-024-00179-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic factors play a significant role in determining an individual's longevity. The present study was aimed at identifying genetic variants associated with longevity in Indian population. Long living individuals (LLIs), aged 85+, were compared with younger controls, aged 18-49 years, using data from GenomegaDB, a genetic database of Indians living in India. An in-house developed custom chip, having variants associated with various cancers, cardiovascular, neurological, gastro-intestinal, metabolic and auto-immune disorders, was used to generate genotype data. Logistic regression analysis with sex and top three genetic principal components as covariates resulted in 9 variants to be significantly associated with longevity at a p-value threshold of 5 × 10<sup>-4</sup>. Alleles associated with slower heart rate (rs365990, MYH6), decreased risk of osteoporosis and short body height (rs2982570, ESR1), decreased risk of schizophrenia (rs1339227, RIMS1-KCNQ5) and decreased risk of anxiety and neuroticism (rs391957, HSPA5) were found to have higher frequency in LLIs. Alleles associated with increased risk of atrial fibrillation (rs3903239, GORAB-PRRX1) and biliary disorders (rs2002042, ABCC2) were found to have lower frequency. The G allele of rs2802292 from FOXO3A gene, associated with longevity in Japanese, German and French centenarians, was also found to be significant in this population (P = 0.032). Pathway enrichment analysis revealed that the genes involved in oxidative stress, apoptosis, DNA damage repair, glucose metabolism and energy metabolism were significantly involved in affecting the longevity. Results of our study demonstrate the genetic basis of healthy aging and longevity in the population.</p>\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"10 1\",\"pages\":\"51\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579347/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-024-00179-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-024-00179-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

遗传因素在决定个人寿命方面起着重要作用。本研究旨在确定印度人口中与长寿相关的遗传变异。研究人员利用印度印度人基因数据库 GenomegaDB 中的数据,将 85 岁以上的长寿者(LLIs)与 18-49 岁的年轻对照组进行了比较。使用内部开发的定制芯片生成基因型数据,该芯片含有与各种癌症、心血管、神经、胃肠、代谢和自身免疫疾病相关的变异。以性别和前三个遗传主成分作为协变量的逻辑回归分析结果显示,9 个变体与长寿有显著相关性,P 值临界值为 5 × 10-4。研究发现,与心率减慢(rs365990,MYH6)、骨质疏松症和矮小风险降低(rs2982570,ESR1)、精神分裂症风险降低(rs1339227,RIMS1-KCNQ5)以及焦虑和神经质风险降低(rs391957,HSPA5)相关的等位基因在长寿者中的频率较高。与心房颤动(rs3903239,GORAB-PRRX1)和胆道疾病(rs2002042,ABCC2)风险增加相关的等位基因频率较低。日本、德国和法国百岁老人中与长寿有关的 FOXO3A 基因 rs2802292 的 G 等位基因在该人群中也被发现具有显著性(P = 0.032)。通路富集分析表明,参与氧化应激、细胞凋亡、DNA 损伤修复、糖代谢和能量代谢的基因显著参与影响长寿。我们的研究结果证明了人群健康衰老和长寿的遗传基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic variants associated with longevity in long-living Indians.

Genetic factors play a significant role in determining an individual's longevity. The present study was aimed at identifying genetic variants associated with longevity in Indian population. Long living individuals (LLIs), aged 85+, were compared with younger controls, aged 18-49 years, using data from GenomegaDB, a genetic database of Indians living in India. An in-house developed custom chip, having variants associated with various cancers, cardiovascular, neurological, gastro-intestinal, metabolic and auto-immune disorders, was used to generate genotype data. Logistic regression analysis with sex and top three genetic principal components as covariates resulted in 9 variants to be significantly associated with longevity at a p-value threshold of 5 × 10-4. Alleles associated with slower heart rate (rs365990, MYH6), decreased risk of osteoporosis and short body height (rs2982570, ESR1), decreased risk of schizophrenia (rs1339227, RIMS1-KCNQ5) and decreased risk of anxiety and neuroticism (rs391957, HSPA5) were found to have higher frequency in LLIs. Alleles associated with increased risk of atrial fibrillation (rs3903239, GORAB-PRRX1) and biliary disorders (rs2002042, ABCC2) were found to have lower frequency. The G allele of rs2802292 from FOXO3A gene, associated with longevity in Japanese, German and French centenarians, was also found to be significant in this population (P = 0.032). Pathway enrichment analysis revealed that the genes involved in oxidative stress, apoptosis, DNA damage repair, glucose metabolism and energy metabolism were significantly involved in affecting the longevity. Results of our study demonstrate the genetic basis of healthy aging and longevity in the population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信