针对乳腺癌α-雌激素受体(ER-α)的二聚体黄酮类化合物(OC251FR2)的分子内研究。

In silico pharmacology Pub Date : 2024-11-19 eCollection Date: 2024-01-01 DOI:10.1007/s40203-024-00282-5
Tunmise T Eugene-Osoikhia, Nnenna W Odozi, Emmanuel O Yeye, Mohammed Isiaka, Ibrahim A Oladosu
{"title":"针对乳腺癌α-雌激素受体(ER-α)的二聚体黄酮类化合物(OC251FR2)的分子内研究。","authors":"Tunmise T Eugene-Osoikhia, Nnenna W Odozi, Emmanuel O Yeye, Mohammed Isiaka, Ibrahim A Oladosu","doi":"10.1007/s40203-024-00282-5","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen hormone dependence accounts for a major cause in the incidence of women breast cancer. ER-<i>α</i> is the major ER subtype in the mammary epithelium and plays a critical role in breast cancer progression. Tamoxifen (1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2- diphenylbut-1(Z)-ene) is a nonsteroidal antiestrogen prodrug which formed pharmacologically active metabolite, 4-hydroxytamoxifen, largely used for endocrine therapy in pre and postmenopausal women with ER-positive breast cancer. However, long term treatment with tamoxifen results in acquires resistance and high probability of disease recurring, hence the need for an alternative breast cancer drug. In silico approach was used to investigate the inhibitory activities of a novel dimeric flavanonol OC251FR2 (3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)-3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) isolated from the chloroform fraction of <i>Garcinia kola</i>, against alpha Estrogen receptor (ER-α); a major contributor to the growth of breast cancer. The docking was conducted using Maestro module 13.5 to obtained the ER-α PDB (5W9C) from NCBI. The OC251FR2 was docked using ligprep module with 4-hydroxytamoxifen being the reference drug. The qikpro was used to investigate the drug-likeliness while ligand docking and induced fit docking were used to investigate the interaction and binding affinity of the ligands with the active sites of the PDB. The result shows that the isolated OC251FR2 with docking score value of -6.214 interact more with amino acids in the active sites via H-bond, pi-pi interaction than the reference drug 4-Hydroxytamoxifen with a docking score value of -5.289. The drug-likeliness determined by qikpro shows that OC251FR2 violated three of the Lipinski rules of 5, and also have percent oral absorption. The quantum mechanics values show that OC251FR2 have similar properties comparable to the reference drug 4-hydroxytamoxifen. Hence, can serve as potential lead against alpha Estrogen receptor (ER-α).</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00282-5.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"108"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573959/pdf/","citationCount":"0","resultStr":"{\"title\":\"In-silico study of novel dimeric flavonoid (OC251FR2) isolated from the seeds of <i>Garcinia kola</i> Heckel (<i>Clusiaceae</i>) against alpha estrogen receptor (ER-α) of breast cancer.\",\"authors\":\"Tunmise T Eugene-Osoikhia, Nnenna W Odozi, Emmanuel O Yeye, Mohammed Isiaka, Ibrahim A Oladosu\",\"doi\":\"10.1007/s40203-024-00282-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estrogen hormone dependence accounts for a major cause in the incidence of women breast cancer. ER-<i>α</i> is the major ER subtype in the mammary epithelium and plays a critical role in breast cancer progression. Tamoxifen (1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2- diphenylbut-1(Z)-ene) is a nonsteroidal antiestrogen prodrug which formed pharmacologically active metabolite, 4-hydroxytamoxifen, largely used for endocrine therapy in pre and postmenopausal women with ER-positive breast cancer. However, long term treatment with tamoxifen results in acquires resistance and high probability of disease recurring, hence the need for an alternative breast cancer drug. In silico approach was used to investigate the inhibitory activities of a novel dimeric flavanonol OC251FR2 (3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)-3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) isolated from the chloroform fraction of <i>Garcinia kola</i>, against alpha Estrogen receptor (ER-α); a major contributor to the growth of breast cancer. The docking was conducted using Maestro module 13.5 to obtained the ER-α PDB (5W9C) from NCBI. The OC251FR2 was docked using ligprep module with 4-hydroxytamoxifen being the reference drug. The qikpro was used to investigate the drug-likeliness while ligand docking and induced fit docking were used to investigate the interaction and binding affinity of the ligands with the active sites of the PDB. The result shows that the isolated OC251FR2 with docking score value of -6.214 interact more with amino acids in the active sites via H-bond, pi-pi interaction than the reference drug 4-Hydroxytamoxifen with a docking score value of -5.289. The drug-likeliness determined by qikpro shows that OC251FR2 violated three of the Lipinski rules of 5, and also have percent oral absorption. The quantum mechanics values show that OC251FR2 have similar properties comparable to the reference drug 4-hydroxytamoxifen. Hence, can serve as potential lead against alpha Estrogen receptor (ER-α).</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00282-5.</p>\",\"PeriodicalId\":94038,\"journal\":{\"name\":\"In silico pharmacology\",\"volume\":\"12 2\",\"pages\":\"108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In silico pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-024-00282-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00282-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雌激素依赖是女性乳腺癌发病率的主要原因。ER-α是乳腺上皮细胞中的主要ER亚型,在乳腺癌的发展过程中起着至关重要的作用。他莫昔芬(1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2-diphenylbut-1(Z)-ene)是一种非甾体抗雌激素原药,其药理活性代谢产物为 4-羟基他莫昔芬,主要用于绝经前和绝经后ER阳性乳腺癌妇女的内分泌治疗。然而,长期使用他莫昔芬治疗会产生耐药性,疾病复发的可能性很高,因此需要一种替代性乳腺癌药物。本研究采用硅学方法研究了一种新型二聚黄烷醇 OC251FR2(3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)-3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)对α-雌激素受体(ER-α)的抑制活性;α-雌激素受体 (ER-α);α-雌激素受体是导致乳腺癌生长的主要因素。利用 Maestro 模块 13.5 从 NCBI 获取了 ER-α PDB (5W9C),进行了对接。使用 ligprep 模块与 OC251FR2 进行对接,并以 4-hydroxytamoxifen 为参比药物。qikpro用于研究药物的可药性,配体对接和诱导拟合对接用于研究配体与PDB活性位点的相互作用和结合亲和力。结果表明,与对接分值为-5.289的参考药物4-羟基他莫昔芬相比,对接分值为-6.214的分离配体OC251FR2与活性位点上的氨基酸通过H键、pi-pi相互作用产生了更多的相互作用。通过 qikpro 测定的可药性显示,OC251FR2 违反了利宾斯基规则 5 中的三条,而且口服吸收率也很低。量子力学值表明,OC251FR2 具有与参考药物 4-hydroxytamoxifen 相似的特性。因此,OC251FR2 可作为抗α-雌激素受体(ER-α)的潜在先导药物:在线版本包含补充材料,可查阅 10.1007/s40203-024-00282-5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-silico study of novel dimeric flavonoid (OC251FR2) isolated from the seeds of Garcinia kola Heckel (Clusiaceae) against alpha estrogen receptor (ER-α) of breast cancer.

Estrogen hormone dependence accounts for a major cause in the incidence of women breast cancer. ER-α is the major ER subtype in the mammary epithelium and plays a critical role in breast cancer progression. Tamoxifen (1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2- diphenylbut-1(Z)-ene) is a nonsteroidal antiestrogen prodrug which formed pharmacologically active metabolite, 4-hydroxytamoxifen, largely used for endocrine therapy in pre and postmenopausal women with ER-positive breast cancer. However, long term treatment with tamoxifen results in acquires resistance and high probability of disease recurring, hence the need for an alternative breast cancer drug. In silico approach was used to investigate the inhibitory activities of a novel dimeric flavanonol OC251FR2 (3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)-3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) isolated from the chloroform fraction of Garcinia kola, against alpha Estrogen receptor (ER-α); a major contributor to the growth of breast cancer. The docking was conducted using Maestro module 13.5 to obtained the ER-α PDB (5W9C) from NCBI. The OC251FR2 was docked using ligprep module with 4-hydroxytamoxifen being the reference drug. The qikpro was used to investigate the drug-likeliness while ligand docking and induced fit docking were used to investigate the interaction and binding affinity of the ligands with the active sites of the PDB. The result shows that the isolated OC251FR2 with docking score value of -6.214 interact more with amino acids in the active sites via H-bond, pi-pi interaction than the reference drug 4-Hydroxytamoxifen with a docking score value of -5.289. The drug-likeliness determined by qikpro shows that OC251FR2 violated three of the Lipinski rules of 5, and also have percent oral absorption. The quantum mechanics values show that OC251FR2 have similar properties comparable to the reference drug 4-hydroxytamoxifen. Hence, can serve as potential lead against alpha Estrogen receptor (ER-α).

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00282-5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信