{"title":"基于车辆轨迹数据的交通事故风险预测。","authors":"Hao Li, Lina Yu","doi":"10.1080/15389588.2024.2402936","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study is to conduct precise risk prediction of traffic accidents using vehicle trajectory data.</p><p><strong>Methods: </strong>For urban road and highway scenarios, a scheme was developed to gather vehicle kinematic data and driving operation records from an in-vehicle device. The raw trajectory samples of over 3000 vehicles were processed through cleaning, filtering, interpolation, and normalization for preprocessing. Three deep learning frameworks based on RNN, CNN, and LSTM were compared. An end-to-end LSTM accident risk prediction model was constructed, and the model was trained using the cross-entropy loss function with Adam optimizer.</p><p><strong>Results: </strong>The LSTM model is capable of directly extracting accident-related hazardous state features from low-quality raw trajectory data, thereby enabling the prediction of accident probability with fine-grained time resolution. In tests conducted under complex traffic scenarios, the model successfully identifies high-risk driving behaviors in high-speed road sections and intersections with a prediction accuracy of 0.89, demonstrating strong generalization performance.</p><p><strong>Conclusions: </strong>The LSTM accident risk prediction model, based on vehicle trajectory, developed in this study, is capable of intelligently extracting dangerous driving features. It can accurately warn about the risk of traffic accidents and provides a novel approach to enhancing road safety.</p>","PeriodicalId":54422,"journal":{"name":"Traffic Injury Prevention","volume":" ","pages":"1-8"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of traffic accident risk based on vehicle trajectory data.\",\"authors\":\"Hao Li, Lina Yu\",\"doi\":\"10.1080/15389588.2024.2402936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The objective of this study is to conduct precise risk prediction of traffic accidents using vehicle trajectory data.</p><p><strong>Methods: </strong>For urban road and highway scenarios, a scheme was developed to gather vehicle kinematic data and driving operation records from an in-vehicle device. The raw trajectory samples of over 3000 vehicles were processed through cleaning, filtering, interpolation, and normalization for preprocessing. Three deep learning frameworks based on RNN, CNN, and LSTM were compared. An end-to-end LSTM accident risk prediction model was constructed, and the model was trained using the cross-entropy loss function with Adam optimizer.</p><p><strong>Results: </strong>The LSTM model is capable of directly extracting accident-related hazardous state features from low-quality raw trajectory data, thereby enabling the prediction of accident probability with fine-grained time resolution. In tests conducted under complex traffic scenarios, the model successfully identifies high-risk driving behaviors in high-speed road sections and intersections with a prediction accuracy of 0.89, demonstrating strong generalization performance.</p><p><strong>Conclusions: </strong>The LSTM accident risk prediction model, based on vehicle trajectory, developed in this study, is capable of intelligently extracting dangerous driving features. It can accurately warn about the risk of traffic accidents and provides a novel approach to enhancing road safety.</p>\",\"PeriodicalId\":54422,\"journal\":{\"name\":\"Traffic Injury Prevention\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic Injury Prevention\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15389588.2024.2402936\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic Injury Prevention","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15389588.2024.2402936","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Prediction of traffic accident risk based on vehicle trajectory data.
Objective: The objective of this study is to conduct precise risk prediction of traffic accidents using vehicle trajectory data.
Methods: For urban road and highway scenarios, a scheme was developed to gather vehicle kinematic data and driving operation records from an in-vehicle device. The raw trajectory samples of over 3000 vehicles were processed through cleaning, filtering, interpolation, and normalization for preprocessing. Three deep learning frameworks based on RNN, CNN, and LSTM were compared. An end-to-end LSTM accident risk prediction model was constructed, and the model was trained using the cross-entropy loss function with Adam optimizer.
Results: The LSTM model is capable of directly extracting accident-related hazardous state features from low-quality raw trajectory data, thereby enabling the prediction of accident probability with fine-grained time resolution. In tests conducted under complex traffic scenarios, the model successfully identifies high-risk driving behaviors in high-speed road sections and intersections with a prediction accuracy of 0.89, demonstrating strong generalization performance.
Conclusions: The LSTM accident risk prediction model, based on vehicle trajectory, developed in this study, is capable of intelligently extracting dangerous driving features. It can accurately warn about the risk of traffic accidents and provides a novel approach to enhancing road safety.
期刊介绍:
The purpose of Traffic Injury Prevention is to bridge the disciplines of medicine, engineering, public health and traffic safety in order to foster the science of traffic injury prevention. The archival journal focuses on research, interventions and evaluations within the areas of traffic safety, crash causation, injury prevention and treatment.
General topics within the journal''s scope are driver behavior, road infrastructure, emerging crash avoidance technologies, crash and injury epidemiology, alcohol and drugs, impact injury biomechanics, vehicle crashworthiness, occupant restraints, pedestrian safety, evaluation of interventions, economic consequences and emergency and clinical care with specific application to traffic injury prevention. The journal includes full length papers, review articles, case studies, brief technical notes and commentaries.