建立侧向手动拦截行为的运行动力学模型。

IF 0.9 4区 医学 Q4 NEUROSCIENCES
Motor Control Pub Date : 2024-11-20 DOI:10.1123/mc.2024-0036
Danial Borooghani, Remy Casanova, Frank T J M Zaal, Reinoud J Bootsma
{"title":"建立侧向手动拦截行为的运行动力学模型。","authors":"Danial Borooghani, Remy Casanova, Frank T J M Zaal, Reinoud J Bootsma","doi":"10.1123/mc.2024-0036","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a dynamics-based model of discrete movement for lateral manual interception capable of generating movements with realistic kinematics. For the present purposes, we focus on the situation of to-be-intercepted targets moving at constant speed along rectilinear trajectories oriented orthogonally with respect to the interception axis. The proposed phenomenological model is designed to capture the time evolution of empirically observed hand movements along the interception axis under different conditions of target arrival location and target speed-induced time pressure. Pattern formation dynamics combine a Duffing stiffness function, allowing for creating a fixed-point attractor at the perceived location of the target arrival on the interception axis, with a hybrid Rayleigh plus Van der Pol damping function. After parametrizing the model for required movement direction (left/right), amplitude, and duration, it adequately reproduces the (variations in) empirically observed kinematics with a single set of four coefficients for all conditions considered. The model is also demonstrated to inherently incorporate speed-accuracy trade-off characteristics.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":" ","pages":"1-16"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward an Operational Dynamical Model of Lateral Manual Interception Behavior.\",\"authors\":\"Danial Borooghani, Remy Casanova, Frank T J M Zaal, Reinoud J Bootsma\",\"doi\":\"10.1123/mc.2024-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop a dynamics-based model of discrete movement for lateral manual interception capable of generating movements with realistic kinematics. For the present purposes, we focus on the situation of to-be-intercepted targets moving at constant speed along rectilinear trajectories oriented orthogonally with respect to the interception axis. The proposed phenomenological model is designed to capture the time evolution of empirically observed hand movements along the interception axis under different conditions of target arrival location and target speed-induced time pressure. Pattern formation dynamics combine a Duffing stiffness function, allowing for creating a fixed-point attractor at the perceived location of the target arrival on the interception axis, with a hybrid Rayleigh plus Van der Pol damping function. After parametrizing the model for required movement direction (left/right), amplitude, and duration, it adequately reproduces the (variations in) empirically observed kinematics with a single set of four coefficients for all conditions considered. The model is also demonstrated to inherently incorporate speed-accuracy trade-off characteristics.</p>\",\"PeriodicalId\":49795,\"journal\":{\"name\":\"Motor Control\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Motor Control\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/mc.2024-0036\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2024-0036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种基于动力学的横向手动拦截离散运动模型,该模型能够生成具有逼真运动学特性的运动。在本研究中,我们将重点放在待拦截目标沿着与拦截轴成正交方向的直线轨迹匀速运动的情况上。所提出的现象学模型旨在捕捉在目标到达位置和目标速度引起的时间压力的不同条件下,根据经验观察到的手沿拦截轴运动的时间演变。模式形成动力学结合了达芬刚度函数(允许在拦截轴上目标到达的感知位置创建定点吸引器)和雷利加范德波尔混合阻尼函数。在对模型所需的运动方向(左/右)、振幅和持续时间进行参数化之后,该模型在所有条件下都能以单组四个系数充分再现经验观察到的运动学(变化)。该模型还证明了速度-精度权衡特性的内在结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward an Operational Dynamical Model of Lateral Manual Interception Behavior.

We develop a dynamics-based model of discrete movement for lateral manual interception capable of generating movements with realistic kinematics. For the present purposes, we focus on the situation of to-be-intercepted targets moving at constant speed along rectilinear trajectories oriented orthogonally with respect to the interception axis. The proposed phenomenological model is designed to capture the time evolution of empirically observed hand movements along the interception axis under different conditions of target arrival location and target speed-induced time pressure. Pattern formation dynamics combine a Duffing stiffness function, allowing for creating a fixed-point attractor at the perceived location of the target arrival on the interception axis, with a hybrid Rayleigh plus Van der Pol damping function. After parametrizing the model for required movement direction (left/right), amplitude, and duration, it adequately reproduces the (variations in) empirically observed kinematics with a single set of four coefficients for all conditions considered. The model is also demonstrated to inherently incorporate speed-accuracy trade-off characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Motor Control
Motor Control 医学-神经科学
CiteScore
1.80
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders. Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement. In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信