Omor M Khan, Will Gasperini, Chess Necessary, Zach Jacobs, Sam Perry, Jason Rexroat, Kendall Nelson, Paul Gamble, Twyman Clements, Maximilien DeLeon, Sean Howard, Anamaria Zavala, Mary Farach-Carson, Elizabeth Blaber, Danielle Wu, Aykut Satici, Gunes Uzer
{"title":"开发和鉴定用于微重力研究的低强度振动系统。","authors":"Omor M Khan, Will Gasperini, Chess Necessary, Zach Jacobs, Sam Perry, Jason Rexroat, Kendall Nelson, Paul Gamble, Twyman Clements, Maximilien DeLeon, Sean Howard, Anamaria Zavala, Mary Farach-Carson, Elizabeth Blaber, Danielle Wu, Aykut Satici, Gunes Uzer","doi":"10.1038/s41526-024-00444-x","DOIUrl":null,"url":null,"abstract":"<p><p>Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research. In this study, we introduce an LIV bioreactor designed specifically for the usage in the International Space Station. Our research covers the bioreactor's design process and evaluation of the short-term viability of cells encapsulated in hydrogel-laden 3D printed scaffolds under 0.7 g, 90 Hz LIV. An LIV bioreactor compatible with the operation requirements of space missions provides a robust platform to study cellular effects of LIV under real microgravity conditions.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"107"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579003/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of a low intensity vibrational system for microgravity studies.\",\"authors\":\"Omor M Khan, Will Gasperini, Chess Necessary, Zach Jacobs, Sam Perry, Jason Rexroat, Kendall Nelson, Paul Gamble, Twyman Clements, Maximilien DeLeon, Sean Howard, Anamaria Zavala, Mary Farach-Carson, Elizabeth Blaber, Danielle Wu, Aykut Satici, Gunes Uzer\",\"doi\":\"10.1038/s41526-024-00444-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research. In this study, we introduce an LIV bioreactor designed specifically for the usage in the International Space Station. Our research covers the bioreactor's design process and evaluation of the short-term viability of cells encapsulated in hydrogel-laden 3D printed scaffolds under 0.7 g, 90 Hz LIV. An LIV bioreactor compatible with the operation requirements of space missions provides a robust platform to study cellular effects of LIV under real microgravity conditions.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"10 1\",\"pages\":\"107\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579003/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00444-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00444-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
长期载人航天飞行需要更好地了解微重力对生理的影响。虽然地面微重力模拟将低强度振动(LIV)确定为一种可能的对策,但细胞在实际微重力条件下如何对 LIV 作出反应仍未得到探索。因此,低强度振动生物反应器在太空中的适应性仍然有限,导致微重力研究方面存在巨大差距。在本研究中,我们介绍了专为在国际空间站中使用而设计的 LIV 生物反应器。我们的研究涵盖生物反应器的设计过程,以及在 0.7 g、90 Hz LIV 条件下对包裹在水凝胶 3D 打印支架中的细胞的短期存活率进行评估。符合太空任务操作要求的 LIV 生物反应器为研究真实微重力条件下 LIV 对细胞的影响提供了一个强大的平台。
Development and characterization of a low intensity vibrational system for microgravity studies.
Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research. In this study, we introduce an LIV bioreactor designed specifically for the usage in the International Space Station. Our research covers the bioreactor's design process and evaluation of the short-term viability of cells encapsulated in hydrogel-laden 3D printed scaffolds under 0.7 g, 90 Hz LIV. An LIV bioreactor compatible with the operation requirements of space missions provides a robust platform to study cellular effects of LIV under real microgravity conditions.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.