Jianhui Zhang, Zainura Zainon Noor, Nurul Huda Baharuddin, Siti Aminah Setu, Mohd Amir Asyraf Mohd Hamzah, Zainul Akmar Zakaria
{"title":"从土壤中分离出的抗重金属铜绿假单胞菌 DR7 菌株对铅、镉和铜的吸收。","authors":"Jianhui Zhang, Zainura Zainon Noor, Nurul Huda Baharuddin, Siti Aminah Setu, Mohd Amir Asyraf Mohd Hamzah, Zainul Akmar Zakaria","doi":"10.1007/s11274-024-04194-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study highlights the biosorption capacity for Cd (II), Cu (II) and Pb (II) by a locally isolated Pseudomonas aeruginosa DR7. At initial concentrations of 150 mg L<sup>-1</sup> and 240 min of contact time, P. aeruginosa DR7 showed a 62.56 mg/g removal capacity for Cd (II) at an optimum pH of 6.0, 72.49 mg/g for Cu (II) at an optimum pH of 6.0, and 94.2 mg/g for Pb (II) at an optimum pH of 7.0. The experimental data of Cd (II), Cu (II), and Pb (II) adsorbed by the pseudo-second-order kinetic model correlates well with P. aeruginosa DR7, with R<sup>2</sup> all above 0.99, showing that the fitting effect was satisfactory. The isothermal adsorption processes of Cd (II) (0.980) and Cu (II) (0.986) were more consistent with the Freundlich model, whereas Pb (II) was more consistent with the Langmuir model (0.978). FTIR analysis suggested the involvement of hydroxyl, carbonyl, carboxyl, and amine groups present in the inner regions of P. aeruginosa cells during the biosorption process. SEM-EDS analysis revealed that after contact with metals, there were slight changes in the surface appearance of the cells, which confirmed the deposition of metals on the bacterial surface. There was also the possibility of the metals being translocated into the bacterial inner regions by the appearance of electron-dense particles, as observed using TEM. As a conclusion, the removal of metals from solutions using P. aeruginosa DR7 was a plausible alternative as a safe, cheap, and easily used biosorbent.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 12","pages":"387"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uptake of lead, cadmium and copper by heavy metal-resistant Pseudomonas aeruginosa strain DR7 isolated from soil.\",\"authors\":\"Jianhui Zhang, Zainura Zainon Noor, Nurul Huda Baharuddin, Siti Aminah Setu, Mohd Amir Asyraf Mohd Hamzah, Zainul Akmar Zakaria\",\"doi\":\"10.1007/s11274-024-04194-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study highlights the biosorption capacity for Cd (II), Cu (II) and Pb (II) by a locally isolated Pseudomonas aeruginosa DR7. At initial concentrations of 150 mg L<sup>-1</sup> and 240 min of contact time, P. aeruginosa DR7 showed a 62.56 mg/g removal capacity for Cd (II) at an optimum pH of 6.0, 72.49 mg/g for Cu (II) at an optimum pH of 6.0, and 94.2 mg/g for Pb (II) at an optimum pH of 7.0. The experimental data of Cd (II), Cu (II), and Pb (II) adsorbed by the pseudo-second-order kinetic model correlates well with P. aeruginosa DR7, with R<sup>2</sup> all above 0.99, showing that the fitting effect was satisfactory. The isothermal adsorption processes of Cd (II) (0.980) and Cu (II) (0.986) were more consistent with the Freundlich model, whereas Pb (II) was more consistent with the Langmuir model (0.978). FTIR analysis suggested the involvement of hydroxyl, carbonyl, carboxyl, and amine groups present in the inner regions of P. aeruginosa cells during the biosorption process. SEM-EDS analysis revealed that after contact with metals, there were slight changes in the surface appearance of the cells, which confirmed the deposition of metals on the bacterial surface. There was also the possibility of the metals being translocated into the bacterial inner regions by the appearance of electron-dense particles, as observed using TEM. As a conclusion, the removal of metals from solutions using P. aeruginosa DR7 was a plausible alternative as a safe, cheap, and easily used biosorbent.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 12\",\"pages\":\"387\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04194-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04194-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Uptake of lead, cadmium and copper by heavy metal-resistant Pseudomonas aeruginosa strain DR7 isolated from soil.
This study highlights the biosorption capacity for Cd (II), Cu (II) and Pb (II) by a locally isolated Pseudomonas aeruginosa DR7. At initial concentrations of 150 mg L-1 and 240 min of contact time, P. aeruginosa DR7 showed a 62.56 mg/g removal capacity for Cd (II) at an optimum pH of 6.0, 72.49 mg/g for Cu (II) at an optimum pH of 6.0, and 94.2 mg/g for Pb (II) at an optimum pH of 7.0. The experimental data of Cd (II), Cu (II), and Pb (II) adsorbed by the pseudo-second-order kinetic model correlates well with P. aeruginosa DR7, with R2 all above 0.99, showing that the fitting effect was satisfactory. The isothermal adsorption processes of Cd (II) (0.980) and Cu (II) (0.986) were more consistent with the Freundlich model, whereas Pb (II) was more consistent with the Langmuir model (0.978). FTIR analysis suggested the involvement of hydroxyl, carbonyl, carboxyl, and amine groups present in the inner regions of P. aeruginosa cells during the biosorption process. SEM-EDS analysis revealed that after contact with metals, there were slight changes in the surface appearance of the cells, which confirmed the deposition of metals on the bacterial surface. There was also the possibility of the metals being translocated into the bacterial inner regions by the appearance of electron-dense particles, as observed using TEM. As a conclusion, the removal of metals from solutions using P. aeruginosa DR7 was a plausible alternative as a safe, cheap, and easily used biosorbent.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.