电子约束诱导金属中的等离子击穿。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Prasanna Das, Sourav Rudra, Dheemahi Rao, Souvik Banerjee, Ashalatha Indiradevi Kamalasanan Pillai, Magnus Garbrecht, Alexandra Boltasseva, Igor V. Bondarev, Vladimir M. Shalaev, Bivas Saha
{"title":"电子约束诱导金属中的等离子击穿。","authors":"Prasanna Das,&nbsp;Sourav Rudra,&nbsp;Dheemahi Rao,&nbsp;Souvik Banerjee,&nbsp;Ashalatha Indiradevi Kamalasanan Pillai,&nbsp;Magnus Garbrecht,&nbsp;Alexandra Boltasseva,&nbsp;Igor V. Bondarev,&nbsp;Vladimir M. Shalaev,&nbsp;Bivas Saha","doi":"10.1126/sciadv.adr2596","DOIUrl":null,"url":null,"abstract":"<div >Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN). Epitaxial HfN thick films exhibit a low-loss and high-quality Drude-like plasmon resonance in the visible spectral range. However, as the film thickness is reduced to nanoscale dimensions, Coulomb interaction among electrons increases because of electron confinement, leading to the spatial dispersion of plasma frequency. With a further decrease in thickness, electrons lose their ability to shield the incident electric field, turning the medium into a dielectric. The observed metal-insulator transition might carry some signatures of Wigner crystallization and indicates that such transdimensional, between 2D and 3D, films can serve as a promising playground to study strongly correlated electron systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr2596","citationCount":"0","resultStr":"{\"title\":\"Electron confinement–induced plasmonic breakdown in metals\",\"authors\":\"Prasanna Das,&nbsp;Sourav Rudra,&nbsp;Dheemahi Rao,&nbsp;Souvik Banerjee,&nbsp;Ashalatha Indiradevi Kamalasanan Pillai,&nbsp;Magnus Garbrecht,&nbsp;Alexandra Boltasseva,&nbsp;Igor V. Bondarev,&nbsp;Vladimir M. Shalaev,&nbsp;Bivas Saha\",\"doi\":\"10.1126/sciadv.adr2596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN). Epitaxial HfN thick films exhibit a low-loss and high-quality Drude-like plasmon resonance in the visible spectral range. However, as the film thickness is reduced to nanoscale dimensions, Coulomb interaction among electrons increases because of electron confinement, leading to the spatial dispersion of plasma frequency. With a further decrease in thickness, electrons lose their ability to shield the incident electric field, turning the medium into a dielectric. The observed metal-insulator transition might carry some signatures of Wigner crystallization and indicates that such transdimensional, between 2D and 3D, films can serve as a promising playground to study strongly correlated electron systems.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 47\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adr2596\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adr2596\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr2596","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

等离子体共振代表了自由电子气体密度的集体振荡,能够在纳米尺度上增强光与物质的相互作用。传统上,经典的德鲁德(Drude)模型可描述等离子体激发,其中等离子体频率不显示空间弥散。在这里,我们展示了在超薄难熔质子材料氮化铪(HfN)中质子共振破裂以及随之而来的金属-绝缘体转变的确凿实验证据。氮化铪外延厚膜在可见光谱范围内表现出低损耗和高质量的德鲁德类等离子体共振。然而,当薄膜厚度减小到纳米级尺寸时,电子之间的库仑相互作用会因电子束缚而增加,从而导致等离子体频率的空间色散。随着厚度的进一步减小,电子失去了屏蔽入射电场的能力,介质变成了电介质。观察到的金属-绝缘体转变可能带有一些维格纳结晶的特征,并表明这种介于二维和三维之间的跨维薄膜可以作为研究强相关电子系统的理想场所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electron confinement–induced plasmonic breakdown in metals
Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN). Epitaxial HfN thick films exhibit a low-loss and high-quality Drude-like plasmon resonance in the visible spectral range. However, as the film thickness is reduced to nanoscale dimensions, Coulomb interaction among electrons increases because of electron confinement, leading to the spatial dispersion of plasma frequency. With a further decrease in thickness, electrons lose their ability to shield the incident electric field, turning the medium into a dielectric. The observed metal-insulator transition might carry some signatures of Wigner crystallization and indicates that such transdimensional, between 2D and 3D, films can serve as a promising playground to study strongly correlated electron systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信