生物启发催化袋促进胶体量子阱上二氧化碳到乙醇的光电转化。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rongrong Pan, Qi Wang, Yan Zhao, Zhendong Feng, Yanjun Xu, Zhuan Wang, Yapeng Li, Xiuming Zhang, Haoqing Zhang, Jia Liu, Xiang-Kui Gu, Jiangwei Zhang, Yuxiang Weng, Jiatao Zhang
{"title":"生物启发催化袋促进胶体量子阱上二氧化碳到乙醇的光电转化。","authors":"Rongrong Pan,&nbsp;Qi Wang,&nbsp;Yan Zhao,&nbsp;Zhendong Feng,&nbsp;Yanjun Xu,&nbsp;Zhuan Wang,&nbsp;Yapeng Li,&nbsp;Xiuming Zhang,&nbsp;Haoqing Zhang,&nbsp;Jia Liu,&nbsp;Xiang-Kui Gu,&nbsp;Jiangwei Zhang,&nbsp;Yuxiang Weng,&nbsp;Jiatao Zhang","doi":"10.1126/sciadv.adq2791","DOIUrl":null,"url":null,"abstract":"<div >Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO<sub>2</sub>-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO<sub>2</sub>-to-ethanol photoreduction efficiency (5.5 millimoles gram<sup>−1</sup> hour<sup>−1</sup> in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH<sub>2</sub>…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO<sub>2</sub> via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO<sub>2</sub> reduction.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578185/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioinspired catalytic pocket promotes CO2-to-ethanol photoconversion on colloidal quantum wells\",\"authors\":\"Rongrong Pan,&nbsp;Qi Wang,&nbsp;Yan Zhao,&nbsp;Zhendong Feng,&nbsp;Yanjun Xu,&nbsp;Zhuan Wang,&nbsp;Yapeng Li,&nbsp;Xiuming Zhang,&nbsp;Haoqing Zhang,&nbsp;Jia Liu,&nbsp;Xiang-Kui Gu,&nbsp;Jiangwei Zhang,&nbsp;Yuxiang Weng,&nbsp;Jiatao Zhang\",\"doi\":\"10.1126/sciadv.adq2791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO<sub>2</sub>-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO<sub>2</sub>-to-ethanol photoreduction efficiency (5.5 millimoles gram<sup>−1</sup> hour<sup>−1</sup> in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH<sub>2</sub>…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO<sub>2</sub> via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO<sub>2</sub> reduction.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 47\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq2791\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq2791","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

表面反应迟缓是影响光催化太阳能燃料生产效率的一个关键因素,尤其是在二氧化碳-乙醇光电转化过程中。在此,我们受酶催化熟练性和特异性原理的启发,报告了一种生物仿生光催化剂,它能提供卓越的二氧化碳-乙醇光电还原效率(平均 5.5 毫摩尔克-1 小时-1,选择性 98.2%),明显超越了目前的技术水平。关键是在 ZnSe 胶体量子阱上创建一类催化口袋,其中包含近距离空间组织的 NH2...Cu-Se(-Zn) 多重官能团。这种结构为模拟酶催化过程中活性位点与周围次级/外配位层之间的协同合作提供了一个平台。具体表现为通过弯曲的几何形状对二氧化碳进行化学吸附和活化、对各种重要中间体的有利稳定、促进多电子/质子转移过程等。这些结果凸显了在光催化剂的设计中加入类似酶的特征以克服二氧化碳还原挑战的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired catalytic pocket promotes CO2-to-ethanol photoconversion on colloidal quantum wells
Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO2-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO2-to-ethanol photoreduction efficiency (5.5 millimoles gram−1 hour−1 in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH2…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO2 via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO2 reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信