以多种成像参数重建的肺癌 CT 扫描图像的注释测试-重复数据集。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Binsheng Zhao, Laurent Dercle, Hao Yang, Gregory J Riely, Mark G Kris, Lawrence H Schwartz
{"title":"以多种成像参数重建的肺癌 CT 扫描图像的注释测试-重复数据集。","authors":"Binsheng Zhao, Laurent Dercle, Hao Yang, Gregory J Riely, Mark G Kris, Lawrence H Schwartz","doi":"10.1038/s41597-024-04085-3","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1259"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579286/pdf/","citationCount":"0","resultStr":"{\"title\":\"Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters.\",\"authors\":\"Binsheng Zhao, Laurent Dercle, Hao Yang, Gregory J Riely, Mark G Kris, Lawrence H Schwartz\",\"doi\":\"10.1038/s41597-024-04085-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1259\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04085-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04085-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

定量成像生物标志物(QIB)越来越多地被用于临床研究,以推进肿瘤学的精准医疗方法。计算机断层扫描(CT)因其可靠性和全球可及性而成为癌症诊断、预后和反应评估的首选方式。在此,我们通过癌症成像档案(TCIA)为癌症成像界做出了贡献,提供了由研究者发起的 32 名非小细胞肺癌(NSCLC)患者的当天重复 CT 扫描图像,以及放射科医生标注的病灶轮廓作为参考标准。每次扫描都使用三种切片厚度(1.25 毫米、2.5 毫米、5 毫米)和两种重建核(肺部、标准;GE CT 设备)的不同组合重建成 6 种图像设置,涵盖了肺癌临床实践和临床试验中常用的各种 CT 成像重建参数。这对于推动强大的放射组学、人工智能(AI)和机器学习(ML)方法的发展具有相当大的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters.

Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信