Bastien Berret, Dorian Verdel, Etienne Burdet, Frédéric Jean
{"title":"共同牵引体现不确定性:稳健运动控制的最佳前馈策略","authors":"Bastien Berret, Dorian Verdel, Etienne Burdet, Frédéric Jean","doi":"10.1371/journal.pcbi.1012598","DOIUrl":null,"url":null,"abstract":"<p><p>Despite our environment often being uncertain, we generally manage to generate stable motor behaviors. While reactive control plays a major role in this achievement, proactive control is critical to cope with the substantial noise and delays that affect neuromusculoskeletal systems. In particular, muscle co-contraction is exploited to robustify feedforward motor commands against internal sensorimotor noise as was revealed by stochastic optimal open-loop control modeling. Here, we extend this framework to neuromusculoskeletal systems subjected to random disturbances originating from the environment. The analytical derivation and numerical simulations predict a characteristic relationship between the degree of uncertainty in the task at hand and the optimal level of anticipatory co-contraction. This prediction is confirmed through a single-joint pointing task experiment where an external torque is applied to the wrist near the end of the reaching movement with varying probabilities across blocks of trials. We conclude that uncertainty calls for impedance control via proactive muscle co-contraction to stabilize behaviors when reactive control is insufficient for task success.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 11","pages":"e1012598"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-contraction embodies uncertainty: An optimal feedforward strategy for robust motor control.\",\"authors\":\"Bastien Berret, Dorian Verdel, Etienne Burdet, Frédéric Jean\",\"doi\":\"10.1371/journal.pcbi.1012598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite our environment often being uncertain, we generally manage to generate stable motor behaviors. While reactive control plays a major role in this achievement, proactive control is critical to cope with the substantial noise and delays that affect neuromusculoskeletal systems. In particular, muscle co-contraction is exploited to robustify feedforward motor commands against internal sensorimotor noise as was revealed by stochastic optimal open-loop control modeling. Here, we extend this framework to neuromusculoskeletal systems subjected to random disturbances originating from the environment. The analytical derivation and numerical simulations predict a characteristic relationship between the degree of uncertainty in the task at hand and the optimal level of anticipatory co-contraction. This prediction is confirmed through a single-joint pointing task experiment where an external torque is applied to the wrist near the end of the reaching movement with varying probabilities across blocks of trials. We conclude that uncertainty calls for impedance control via proactive muscle co-contraction to stabilize behaviors when reactive control is insufficient for task success.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"20 11\",\"pages\":\"e1012598\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012598\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012598","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Co-contraction embodies uncertainty: An optimal feedforward strategy for robust motor control.
Despite our environment often being uncertain, we generally manage to generate stable motor behaviors. While reactive control plays a major role in this achievement, proactive control is critical to cope with the substantial noise and delays that affect neuromusculoskeletal systems. In particular, muscle co-contraction is exploited to robustify feedforward motor commands against internal sensorimotor noise as was revealed by stochastic optimal open-loop control modeling. Here, we extend this framework to neuromusculoskeletal systems subjected to random disturbances originating from the environment. The analytical derivation and numerical simulations predict a characteristic relationship between the degree of uncertainty in the task at hand and the optimal level of anticipatory co-contraction. This prediction is confirmed through a single-joint pointing task experiment where an external torque is applied to the wrist near the end of the reaching movement with varying probabilities across blocks of trials. We conclude that uncertainty calls for impedance control via proactive muscle co-contraction to stabilize behaviors when reactive control is insufficient for task success.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.