Holger Fiedler, Jake Hardy, Jonathan E Halpert, Nathaniel J L K Davis, John Kennedy
{"title":"通过惰性气体离子束缺陷工程实现 CsPbBr3thin 薄膜的浅缺陷和光学特性。","authors":"Holger Fiedler, Jake Hardy, Jonathan E Halpert, Nathaniel J L K Davis, John Kennedy","doi":"10.1088/1361-6528/ad91bd","DOIUrl":null,"url":null,"abstract":"<p><p>Ion implantation is widely utilised for the modification of inorganic semiconductors; however, the technique has not been extensively applied to lead halide perovskites. In this report, we demonstrate the modification of the optical properties of caesium lead bromide (CsPbBr<sub>3</sub>) thin films via noble gas ion implantation. We observed that the photoluminescence (PL) lifetimes of CsPbBr<sub>3</sub>thin films can be doubled by low fluences (<1 × 10<sup>14</sup>at·cm<sup>-2</sup>) of ion implantation with an acceleration voltage of 20 keV. We attribute this phenomenon to ion beam induced shallow minority charge carrier trapping induced by nuclear stopping, dominant by heavy noble gases (Ar, Xe). Simultaneously, the PL quantum yield (PLQY) is altered during noble gas ion implantation inversely correlates with the electronic stopping power of the implanted element, hence Ar implantation reduces the PLQY, while Ne even causes a PLQY enhancement. These results thus provide a guide to separate the effect of nuclear and electronic damage during ion implantation into halide perovskites.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shallow defects and optical properties of CsPbBr<sub>3</sub>thin films through noble gas ion beam defect engineering.\",\"authors\":\"Holger Fiedler, Jake Hardy, Jonathan E Halpert, Nathaniel J L K Davis, John Kennedy\",\"doi\":\"10.1088/1361-6528/ad91bd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ion implantation is widely utilised for the modification of inorganic semiconductors; however, the technique has not been extensively applied to lead halide perovskites. In this report, we demonstrate the modification of the optical properties of caesium lead bromide (CsPbBr<sub>3</sub>) thin films via noble gas ion implantation. We observed that the photoluminescence (PL) lifetimes of CsPbBr<sub>3</sub>thin films can be doubled by low fluences (<1 × 10<sup>14</sup>at·cm<sup>-2</sup>) of ion implantation with an acceleration voltage of 20 keV. We attribute this phenomenon to ion beam induced shallow minority charge carrier trapping induced by nuclear stopping, dominant by heavy noble gases (Ar, Xe). Simultaneously, the PL quantum yield (PLQY) is altered during noble gas ion implantation inversely correlates with the electronic stopping power of the implanted element, hence Ar implantation reduces the PLQY, while Ne even causes a PLQY enhancement. These results thus provide a guide to separate the effect of nuclear and electronic damage during ion implantation into halide perovskites.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad91bd\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad91bd","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Shallow defects and optical properties of CsPbBr3thin films through noble gas ion beam defect engineering.
Ion implantation is widely utilised for the modification of inorganic semiconductors; however, the technique has not been extensively applied to lead halide perovskites. In this report, we demonstrate the modification of the optical properties of caesium lead bromide (CsPbBr3) thin films via noble gas ion implantation. We observed that the photoluminescence (PL) lifetimes of CsPbBr3thin films can be doubled by low fluences (<1 × 1014at·cm-2) of ion implantation with an acceleration voltage of 20 keV. We attribute this phenomenon to ion beam induced shallow minority charge carrier trapping induced by nuclear stopping, dominant by heavy noble gases (Ar, Xe). Simultaneously, the PL quantum yield (PLQY) is altered during noble gas ion implantation inversely correlates with the electronic stopping power of the implanted element, hence Ar implantation reduces the PLQY, while Ne even causes a PLQY enhancement. These results thus provide a guide to separate the effect of nuclear and electronic damage during ion implantation into halide perovskites.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.