了解化学气相沉积(CVD)反应器中二维和三维过渡金属二钙化物的竞争生长。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Farman Ullah, Sina Kazemian, Giovanni Fanchini
{"title":"了解化学气相沉积(CVD)反应器中二维和三维过渡金属二钙化物的竞争生长。","authors":"Farman Ullah, Sina Kazemian, Giovanni Fanchini","doi":"10.1088/1361-6528/ad9480","DOIUrl":null,"url":null,"abstract":"<p><p>The competing growth of two-dimensional (2D) and three-dimensional (3D) crystals of layered transition metal dichalcogenides (TMDCs) has been reproducibly observed in a large variety of chemical vapor deposition (CVD) reactors and demands a comprehensive understanding in terms of involved energetics. 2D and 3D growth is fundamentally different due to the large difference in the in-plane and out-of-plane binding energies in TMDC materials. Here, an analytical model describing TMDC growth via CVD is developed. The two most common TMDC structures produced via CVD growth (2D triangular flakes and 3D tetrahedra) are considered, and their formation energies are determined as a function of their growth parameters. By calculating the associated energies of 2D triangular or 3D tetrahedral flakes, we predict the minimum sizes of the critical nuclei of 2D triangular and 3D morphologies, and thereby determine the minimum realizable dimensions of TMDC, in the form of quantum dots. Analysis of growth rates shows that CVD favors 2D growth of MoS<sub>2</sub>between 820 K and 900 K and 3D growth over 900 K. Our model also suggests that the flow rates of TMDC precursors (metal oxide and sulfur) in a long, cylindrical CVD reactor are important parameters for attaining uniform growth. Our model provides a compressive analysis of TMDC growth via CVD. Therefore, it is a critical tool for helping to achieve reproducible growth of 2D and 3D TMDCs for a variety of applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the competing growth of 2D and 3D transition metal dichalcogenides in a chemical vapor deposition (CVD) reactor.\",\"authors\":\"Farman Ullah, Sina Kazemian, Giovanni Fanchini\",\"doi\":\"10.1088/1361-6528/ad9480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The competing growth of two-dimensional (2D) and three-dimensional (3D) crystals of layered transition metal dichalcogenides (TMDCs) has been reproducibly observed in a large variety of chemical vapor deposition (CVD) reactors and demands a comprehensive understanding in terms of involved energetics. 2D and 3D growth is fundamentally different due to the large difference in the in-plane and out-of-plane binding energies in TMDC materials. Here, an analytical model describing TMDC growth via CVD is developed. The two most common TMDC structures produced via CVD growth (2D triangular flakes and 3D tetrahedra) are considered, and their formation energies are determined as a function of their growth parameters. By calculating the associated energies of 2D triangular or 3D tetrahedral flakes, we predict the minimum sizes of the critical nuclei of 2D triangular and 3D morphologies, and thereby determine the minimum realizable dimensions of TMDC, in the form of quantum dots. Analysis of growth rates shows that CVD favors 2D growth of MoS<sub>2</sub>between 820 K and 900 K and 3D growth over 900 K. Our model also suggests that the flow rates of TMDC precursors (metal oxide and sulfur) in a long, cylindrical CVD reactor are important parameters for attaining uniform growth. Our model provides a compressive analysis of TMDC growth via CVD. Therefore, it is a critical tool for helping to achieve reproducible growth of 2D and 3D TMDCs for a variety of applications.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad9480\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9480","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在各种化学气相沉积(CVD)反应器中都能重复观察到层状过渡金属二钙化物(TMDCs)的二维(2D)和三维(3D)晶体竞相生长的现象,因此需要全面了解其中的能量学原理。由于 TMDC 材料面内和面外结合能的巨大差异,二维和三维生长有着本质的不同。在此,我们建立了一个描述通过 CVD 生长 TMDC 的分析模型。考虑了通过 CVD 生长产生的两种最常见的 TMDC 结构(二维三角形薄片和三维四面体),并确定了它们的形成能与生长参数之间的函数关系。通过计算二维三角形薄片或三维四面体薄片的相关能量,我们预测了二维三角形和三维形态临界核的最小尺寸,从而确定了量子点形式的 TMDC 的最小可实现尺寸。我们的模型还表明,TMDC 前体(金属氧化物和硫)在长圆柱形 CVD 反应器中的流速是实现均匀生长的重要参数。我们的模型提供了通过 CVD 生长 TMDC 的压缩分析。因此,它是帮助实现二维和三维 TMDC 可重现生长的重要工具,适用于各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the competing growth of 2D and 3D transition metal dichalcogenides in a chemical vapor deposition (CVD) reactor.

The competing growth of two-dimensional (2D) and three-dimensional (3D) crystals of layered transition metal dichalcogenides (TMDCs) has been reproducibly observed in a large variety of chemical vapor deposition (CVD) reactors and demands a comprehensive understanding in terms of involved energetics. 2D and 3D growth is fundamentally different due to the large difference in the in-plane and out-of-plane binding energies in TMDC materials. Here, an analytical model describing TMDC growth via CVD is developed. The two most common TMDC structures produced via CVD growth (2D triangular flakes and 3D tetrahedra) are considered, and their formation energies are determined as a function of their growth parameters. By calculating the associated energies of 2D triangular or 3D tetrahedral flakes, we predict the minimum sizes of the critical nuclei of 2D triangular and 3D morphologies, and thereby determine the minimum realizable dimensions of TMDC, in the form of quantum dots. Analysis of growth rates shows that CVD favors 2D growth of MoS2between 820 K and 900 K and 3D growth over 900 K. Our model also suggests that the flow rates of TMDC precursors (metal oxide and sulfur) in a long, cylindrical CVD reactor are important parameters for attaining uniform growth. Our model provides a compressive analysis of TMDC growth via CVD. Therefore, it is a critical tool for helping to achieve reproducible growth of 2D and 3D TMDCs for a variety of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信