用于局部癌症化疗-光热疗法的双反应水凝胶的持续药物释放。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhixiang Liu, Yoshitaka Koseki, Ryuju Suzuki, Anh Thi Ngoc Dao, Hitoshi Kasai
{"title":"用于局部癌症化疗-光热疗法的双反应水凝胶的持续药物释放。","authors":"Zhixiang Liu, Yoshitaka Koseki, Ryuju Suzuki, Anh Thi Ngoc Dao, Hitoshi Kasai","doi":"10.1002/mabi.202400413","DOIUrl":null,"url":null,"abstract":"<p><p>As an exceptional carrier for localized drug delivery to tumors, hydrogels can achieve prolonged drug release through careful design and adjustments, effectively targeting cancer cells and minimizing side effects. This study investigates a novel dual-responsive hydrogel system designed for the delivery of nanomedicines, focusing on drug release and the local antitumor efficacy of SN-38-cholesterol nanoparticles (SN-38-chol NPs) and polydopamine NPs (PDA NPs)/poly(n-isopropylacrylamide) (pNIPAM) hydrogels. By combining the thermosensitive properties of pNIPAM with the near-infrared (NIR) responsiveness of PDA NPs, the hydrogel aims to enhance on-demand drug release. SN-38-chol NPs, known for their stability and small size, are incorporated into the hydrogel to improve drug release dynamics. The investigation reveals a drug release cycle of over three weeks, maintaining sensitivity to both temperature and NIR light for controlled drug release. In vivo studies demonstrate the high tumor growth inhibition performance of the system after photothermal treatment induced by 808 nm NIR light. These results suggest that the drug-carrying hydrogel system holds promise for diverse applications in chemical and physical therapies, including the treatment of malignant wounds, post-surgery wound healing, and direct tumor treatment. This study establishes the potential of SN-38-chol NPs and PDA NPs/pNIPAM hydrogels as effective platforms for chemo-phototherapy.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400413"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustained Drug Release from Dual-Responsive Hydrogels for Local Cancer Chemo-Photothermal Therapy.\",\"authors\":\"Zhixiang Liu, Yoshitaka Koseki, Ryuju Suzuki, Anh Thi Ngoc Dao, Hitoshi Kasai\",\"doi\":\"10.1002/mabi.202400413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As an exceptional carrier for localized drug delivery to tumors, hydrogels can achieve prolonged drug release through careful design and adjustments, effectively targeting cancer cells and minimizing side effects. This study investigates a novel dual-responsive hydrogel system designed for the delivery of nanomedicines, focusing on drug release and the local antitumor efficacy of SN-38-cholesterol nanoparticles (SN-38-chol NPs) and polydopamine NPs (PDA NPs)/poly(n-isopropylacrylamide) (pNIPAM) hydrogels. By combining the thermosensitive properties of pNIPAM with the near-infrared (NIR) responsiveness of PDA NPs, the hydrogel aims to enhance on-demand drug release. SN-38-chol NPs, known for their stability and small size, are incorporated into the hydrogel to improve drug release dynamics. The investigation reveals a drug release cycle of over three weeks, maintaining sensitivity to both temperature and NIR light for controlled drug release. In vivo studies demonstrate the high tumor growth inhibition performance of the system after photothermal treatment induced by 808 nm NIR light. These results suggest that the drug-carrying hydrogel system holds promise for diverse applications in chemical and physical therapies, including the treatment of malignant wounds, post-surgery wound healing, and direct tumor treatment. This study establishes the potential of SN-38-chol NPs and PDA NPs/pNIPAM hydrogels as effective platforms for chemo-phototherapy.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400413\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400413\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400413","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶是肿瘤局部给药的一种特殊载体,通过精心设计和调整,可实现药物的长时间释放,有效靶向癌细胞并将副作用降至最低。本研究探讨了一种新型双响应水凝胶系统,该系统设计用于纳米药物的递送,重点研究 SN-38-cholesterol 纳米粒子(SN-38-chol NPs)和聚多巴胺 NPs(PDA NPs)/聚(正异丙基丙烯酰胺)(pNIPAM)水凝胶的药物释放和局部抗肿瘤功效。这种水凝胶结合了 pNIPAM 的热敏特性和 PDA NPs 的近红外(NIR)响应性,旨在提高药物的按需释放。SN-38-chol NPs 以其稳定性和小尺寸而著称,被加入水凝胶中以改善药物释放动力学。研究表明,这种水凝胶的药物释放周期超过三周,对温度和近红外光都保持敏感,从而实现了药物的可控释放。体内研究表明,在 808 纳米近红外光的诱导下进行光热处理后,该系统对肿瘤生长有很强的抑制作用。这些结果表明,这种载药水凝胶系统有望在化学和物理疗法中得到广泛应用,包括治疗恶性伤口、手术后伤口愈合和直接治疗肿瘤。这项研究证实了 SN-38-chol NPs 和 PDA NPs/pNIPAM 水凝胶作为化疗光疗有效平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustained Drug Release from Dual-Responsive Hydrogels for Local Cancer Chemo-Photothermal Therapy.

As an exceptional carrier for localized drug delivery to tumors, hydrogels can achieve prolonged drug release through careful design and adjustments, effectively targeting cancer cells and minimizing side effects. This study investigates a novel dual-responsive hydrogel system designed for the delivery of nanomedicines, focusing on drug release and the local antitumor efficacy of SN-38-cholesterol nanoparticles (SN-38-chol NPs) and polydopamine NPs (PDA NPs)/poly(n-isopropylacrylamide) (pNIPAM) hydrogels. By combining the thermosensitive properties of pNIPAM with the near-infrared (NIR) responsiveness of PDA NPs, the hydrogel aims to enhance on-demand drug release. SN-38-chol NPs, known for their stability and small size, are incorporated into the hydrogel to improve drug release dynamics. The investigation reveals a drug release cycle of over three weeks, maintaining sensitivity to both temperature and NIR light for controlled drug release. In vivo studies demonstrate the high tumor growth inhibition performance of the system after photothermal treatment induced by 808 nm NIR light. These results suggest that the drug-carrying hydrogel system holds promise for diverse applications in chemical and physical therapies, including the treatment of malignant wounds, post-surgery wound healing, and direct tumor treatment. This study establishes the potential of SN-38-chol NPs and PDA NPs/pNIPAM hydrogels as effective platforms for chemo-phototherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信