多体定位的福克空间景观。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Sthitadhi Roy, David E Logan
{"title":"多体定位的福克空间景观。","authors":"Sthitadhi Roy, David E Logan","doi":"10.1088/1361-648X/ad94c3","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews recent progress in understanding the physics of many-body localisation (MBL) in disordered and interacting quantum many-body systems, from the perspective of ergodicity breaking on the associated Fock space. This approach to MBL is underpinned by mapping the dynamics of the many-body system onto that of a fictitious single particle on the high-dimensional, correlated and disordered Fock-space graph; yet, as we elaborate, the problem is fundamentally different from that of conventional Anderson localisation on high-dimensional or hierarchical graphs. We discuss in detail the nature of eigenstate correlations on the Fock space, both static and dynamic, and in the ergodic and many-body localised phases as well as in the vicinity of the MBL transition. The latter in turn sheds light on the nature of the transition, and motivates a scaling theory for it in terms of Fock-space based quantities. We also illustrate how these quantities can be concretely connected to real-space observables. An overview is given of several analytical and numerical techniques which have proven important in developing a comprehensive picture. Finally, we comment on some open questions in the field of MBL where the Fock-space approach is likely to prove insightful.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fock-space landscape of many-body localisation.\",\"authors\":\"Sthitadhi Roy, David E Logan\",\"doi\":\"10.1088/1361-648X/ad94c3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article reviews recent progress in understanding the physics of many-body localisation (MBL) in disordered and interacting quantum many-body systems, from the perspective of ergodicity breaking on the associated Fock space. This approach to MBL is underpinned by mapping the dynamics of the many-body system onto that of a fictitious single particle on the high-dimensional, correlated and disordered Fock-space graph; yet, as we elaborate, the problem is fundamentally different from that of conventional Anderson localisation on high-dimensional or hierarchical graphs. We discuss in detail the nature of eigenstate correlations on the Fock space, both static and dynamic, and in the ergodic and many-body localised phases as well as in the vicinity of the MBL transition. The latter in turn sheds light on the nature of the transition, and motivates a scaling theory for it in terms of Fock-space based quantities. We also illustrate how these quantities can be concretely connected to real-space observables. An overview is given of several analytical and numerical techniques which have proven important in developing a comprehensive picture. Finally, we comment on some open questions in the field of MBL where the Fock-space approach is likely to prove insightful.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad94c3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad94c3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了从相关福克空间的遍历性破缺角度理解无序和相互作用量子多体系统中多体定位(MBL)物理学的最新进展。这种 MBL 方法的基础是将多体系统的动力学映射到高维、相关和无序 Fock 空间 graph 上的虚构单粒子动力学上;然而,正如我们所阐述的,这个问题与高维或层次图上的传统安德森定位问题有着本质区别。我们详细讨论了福克空间上特征状态相关性的性质,包括静态和动态相关性、遍历和多体局部化阶段相关性以及 MBL 过渡附近相关性。后者反过来揭示了转变的本质,并激发了基于福克空间量的缩放理论。我们还说明了如何将这些量与实空间观测值具体联系起来。我们还概述了几种分析和数值技术,这些技术已被证明对形成全面的图像非常重要。最后,我们评论了 MBL 领域的一些开放性问题,在这些问题上,Fock-space 方法很可能被证明是具有洞察力的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fock-space landscape of many-body localisation.

This article reviews recent progress in understanding the physics of many-body localisation (MBL) in disordered and interacting quantum many-body systems, from the perspective of ergodicity breaking on the associated Fock space. This approach to MBL is underpinned by mapping the dynamics of the many-body system onto that of a fictitious single particle on the high-dimensional, correlated and disordered Fock-space graph; yet, as we elaborate, the problem is fundamentally different from that of conventional Anderson localisation on high-dimensional or hierarchical graphs. We discuss in detail the nature of eigenstate correlations on the Fock space, both static and dynamic, and in the ergodic and many-body localised phases as well as in the vicinity of the MBL transition. The latter in turn sheds light on the nature of the transition, and motivates a scaling theory for it in terms of Fock-space based quantities. We also illustrate how these quantities can be concretely connected to real-space observables. An overview is given of several analytical and numerical techniques which have proven important in developing a comprehensive picture. Finally, we comment on some open questions in the field of MBL where the Fock-space approach is likely to prove insightful.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信