Michael A. Kurtz, Jeremy L. Gilbert, Hannah Spece, Gregg R. Klein, Harold E. Cates, Steven M. Kurtz
{"title":"胫骨底板微结构影响体内高循环疲劳断裂","authors":"Michael A. Kurtz, Jeremy L. Gilbert, Hannah Spece, Gregg R. Klein, Harold E. Cates, Steven M. Kurtz","doi":"10.1002/jbm.b.35507","DOIUrl":null,"url":null,"abstract":"<p>Previous studies report rare occurrences of tibial baseplate fractures following primary total knee arthroplasty (TKA). However, at a microstructural scale, it remains unclear how fatigue models developed in vitro apply to fractures in vivo. In this study, we asked: (1) do any clinical factors differentiate fracture patients from a broader revision sample; and (2) in vivo, how does microstructure influence fatigue crack propagation? We identified three fractured tibial baseplates from an institutional review board exempt implant retrieval program. Then, for comparison, we collated clinical data from the same database for <i>n</i> = 2120 revision TKA patients with tibial trays. To identify mechanisms, we characterized fracture features using scanning electron and digital optical microscopy. Additionally, we performed cross sectional analysis using focused ion beam milling. The fracture cohort consisted of moderately to very active patients with increased implantation time (15.6 years) compared to the larger revision patient sample (5.1 years, <i>p</i> = 0.009). We did not find a significant difference in patient weight between the two groups (<i>p</i> = 0.98). Macroscopic fracture features aligned well with both previous retrieval analysis and in vitro baseplate fatigue tests. On a micron scale, we identified striations on each baseplate, demonstrating fatigue as the fracture mechanism. In vivo fatigue fracture processes depended on both the alloy (Ti-6Al-4V vs. CoCrMo) and the microstructure of the alloy formed during manufacturing. For Ti-6Al-4V, the presence of equiaxed or acicular microstructure influenced the fatigue crack propagation, the latter arising from large prior β grains and a Widmanstatten microstructure, degrading fatigue strength. CoCrMo alloy fatigue cracks propagated linearly, crystallographically influenced by planar slip. However, we did not document any features of overload or fast fracture, suggesting a high cycle, low stress fatigue regime. Ultimately, the crack profiles we present here may provide insight into fatigue fractures of modern tibial baseplates.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35507","citationCount":"0","resultStr":"{\"title\":\"Tibial Baseplate Microstructure Governs High Cycle Fatigue Fracture In Vivo\",\"authors\":\"Michael A. Kurtz, Jeremy L. Gilbert, Hannah Spece, Gregg R. Klein, Harold E. Cates, Steven M. Kurtz\",\"doi\":\"10.1002/jbm.b.35507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous studies report rare occurrences of tibial baseplate fractures following primary total knee arthroplasty (TKA). However, at a microstructural scale, it remains unclear how fatigue models developed in vitro apply to fractures in vivo. In this study, we asked: (1) do any clinical factors differentiate fracture patients from a broader revision sample; and (2) in vivo, how does microstructure influence fatigue crack propagation? We identified three fractured tibial baseplates from an institutional review board exempt implant retrieval program. Then, for comparison, we collated clinical data from the same database for <i>n</i> = 2120 revision TKA patients with tibial trays. To identify mechanisms, we characterized fracture features using scanning electron and digital optical microscopy. Additionally, we performed cross sectional analysis using focused ion beam milling. The fracture cohort consisted of moderately to very active patients with increased implantation time (15.6 years) compared to the larger revision patient sample (5.1 years, <i>p</i> = 0.009). We did not find a significant difference in patient weight between the two groups (<i>p</i> = 0.98). Macroscopic fracture features aligned well with both previous retrieval analysis and in vitro baseplate fatigue tests. On a micron scale, we identified striations on each baseplate, demonstrating fatigue as the fracture mechanism. In vivo fatigue fracture processes depended on both the alloy (Ti-6Al-4V vs. CoCrMo) and the microstructure of the alloy formed during manufacturing. For Ti-6Al-4V, the presence of equiaxed or acicular microstructure influenced the fatigue crack propagation, the latter arising from large prior β grains and a Widmanstatten microstructure, degrading fatigue strength. CoCrMo alloy fatigue cracks propagated linearly, crystallographically influenced by planar slip. However, we did not document any features of overload or fast fracture, suggesting a high cycle, low stress fatigue regime. Ultimately, the crack profiles we present here may provide insight into fatigue fractures of modern tibial baseplates.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"112 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35507\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35507\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35507","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Tibial Baseplate Microstructure Governs High Cycle Fatigue Fracture In Vivo
Previous studies report rare occurrences of tibial baseplate fractures following primary total knee arthroplasty (TKA). However, at a microstructural scale, it remains unclear how fatigue models developed in vitro apply to fractures in vivo. In this study, we asked: (1) do any clinical factors differentiate fracture patients from a broader revision sample; and (2) in vivo, how does microstructure influence fatigue crack propagation? We identified three fractured tibial baseplates from an institutional review board exempt implant retrieval program. Then, for comparison, we collated clinical data from the same database for n = 2120 revision TKA patients with tibial trays. To identify mechanisms, we characterized fracture features using scanning electron and digital optical microscopy. Additionally, we performed cross sectional analysis using focused ion beam milling. The fracture cohort consisted of moderately to very active patients with increased implantation time (15.6 years) compared to the larger revision patient sample (5.1 years, p = 0.009). We did not find a significant difference in patient weight between the two groups (p = 0.98). Macroscopic fracture features aligned well with both previous retrieval analysis and in vitro baseplate fatigue tests. On a micron scale, we identified striations on each baseplate, demonstrating fatigue as the fracture mechanism. In vivo fatigue fracture processes depended on both the alloy (Ti-6Al-4V vs. CoCrMo) and the microstructure of the alloy formed during manufacturing. For Ti-6Al-4V, the presence of equiaxed or acicular microstructure influenced the fatigue crack propagation, the latter arising from large prior β grains and a Widmanstatten microstructure, degrading fatigue strength. CoCrMo alloy fatigue cracks propagated linearly, crystallographically influenced by planar slip. However, we did not document any features of overload or fast fracture, suggesting a high cycle, low stress fatigue regime. Ultimately, the crack profiles we present here may provide insight into fatigue fractures of modern tibial baseplates.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.