{"title":"Vahagn:用于滑倒检测的可视触觉注意力门网","authors":"Jinlin Wang, Yulong Ji, Hongyu Yang","doi":"10.3389/fnbot.2024.1484751","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Slip detection is crucial for achieving stable grasping and subsequent operational tasks. A grasp action is a continuous process that requires information from multiple sources. The success of a specific grasping maneuver is contingent upon the confluence of two factors: the spatial accuracy of the contact and the stability of the continuous process.</p><p><strong>Methods: </strong>In this paper, for the task of perceiving grasping results using visual-haptic information, we propose a new method for slip detection, which synergizes visual and haptic information from spatial-temporal dual dimensions. Specifically, the method takes as input a sequence of visual images from a first-person perspective and a sequence of haptic images from a gripper. Then, it extracts time-dependent features of the whole process and spatial features matching the importance of different parts with different attention mechanisms. Inspired by neurological studies, during the information fusion process, we adjusted temporal and spatial information from vision and haptic through a combination of two-step fusion and gate units.</p><p><strong>Results and discussion: </strong>To validate the effectiveness of method, we compared it with traditional CNN net and models with attention. It is anticipated that our method achieves a classification accuracy of 93.59%, which is higher than that of previous works. Attention visualization is further presented to support the validity.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1484751"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vahagn: VisuAl Haptic Attention Gate Net for slip detection.\",\"authors\":\"Jinlin Wang, Yulong Ji, Hongyu Yang\",\"doi\":\"10.3389/fnbot.2024.1484751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Slip detection is crucial for achieving stable grasping and subsequent operational tasks. A grasp action is a continuous process that requires information from multiple sources. The success of a specific grasping maneuver is contingent upon the confluence of two factors: the spatial accuracy of the contact and the stability of the continuous process.</p><p><strong>Methods: </strong>In this paper, for the task of perceiving grasping results using visual-haptic information, we propose a new method for slip detection, which synergizes visual and haptic information from spatial-temporal dual dimensions. Specifically, the method takes as input a sequence of visual images from a first-person perspective and a sequence of haptic images from a gripper. Then, it extracts time-dependent features of the whole process and spatial features matching the importance of different parts with different attention mechanisms. Inspired by neurological studies, during the information fusion process, we adjusted temporal and spatial information from vision and haptic through a combination of two-step fusion and gate units.</p><p><strong>Results and discussion: </strong>To validate the effectiveness of method, we compared it with traditional CNN net and models with attention. It is anticipated that our method achieves a classification accuracy of 93.59%, which is higher than that of previous works. Attention visualization is further presented to support the validity.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"18 \",\"pages\":\"1484751\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1484751\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1484751","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Vahagn: VisuAl Haptic Attention Gate Net for slip detection.
Introduction: Slip detection is crucial for achieving stable grasping and subsequent operational tasks. A grasp action is a continuous process that requires information from multiple sources. The success of a specific grasping maneuver is contingent upon the confluence of two factors: the spatial accuracy of the contact and the stability of the continuous process.
Methods: In this paper, for the task of perceiving grasping results using visual-haptic information, we propose a new method for slip detection, which synergizes visual and haptic information from spatial-temporal dual dimensions. Specifically, the method takes as input a sequence of visual images from a first-person perspective and a sequence of haptic images from a gripper. Then, it extracts time-dependent features of the whole process and spatial features matching the importance of different parts with different attention mechanisms. Inspired by neurological studies, during the information fusion process, we adjusted temporal and spatial information from vision and haptic through a combination of two-step fusion and gate units.
Results and discussion: To validate the effectiveness of method, we compared it with traditional CNN net and models with attention. It is anticipated that our method achieves a classification accuracy of 93.59%, which is higher than that of previous works. Attention visualization is further presented to support the validity.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.