假设 Weibull 和广义指数分布的均值图比较分析。

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2024-10-31 eCollection Date: 2024-11-15 DOI:10.1016/j.heliyon.2024.e40001
Asad Raza, Sajid Ali, Ismail Shah, A Y Al-Rezami, Mohammed M A Almazah
{"title":"假设 Weibull 和广义指数分布的均值图比较分析。","authors":"Asad Raza, Sajid Ali, Ismail Shah, A Y Al-Rezami, Mohammed M A Almazah","doi":"10.1016/j.heliyon.2024.e40001","DOIUrl":null,"url":null,"abstract":"<p><p>This study discusses Shewhart control charts to monitor the mean of non-normally distributed data using extensive Monte Carlo simulations. In particular, Weibull, exponential, and generalized exponential distributions are used to conduct a systematic study. Different parameters settings are considered to evaluate the effectiveness of the Shewhart charts based on the normal approximation. The results show significant differences between the charts using generalized exponential and Weibull distributions. In particular, the generalized exponential distribution based chart achieves the desired average run length of 370 with a single threshold value across a wide range of shape parameter combinations. On the other hand, the Weibull distribution requires different threshold values depending on its shape parameter. These findings highlight the significance of the two most commonly used distributions in reliability studies and their impact on control chart performance.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"10 21","pages":"e40001"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577234/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of mean charts assuming Weibull and generalized exponential distributions.\",\"authors\":\"Asad Raza, Sajid Ali, Ismail Shah, A Y Al-Rezami, Mohammed M A Almazah\",\"doi\":\"10.1016/j.heliyon.2024.e40001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study discusses Shewhart control charts to monitor the mean of non-normally distributed data using extensive Monte Carlo simulations. In particular, Weibull, exponential, and generalized exponential distributions are used to conduct a systematic study. Different parameters settings are considered to evaluate the effectiveness of the Shewhart charts based on the normal approximation. The results show significant differences between the charts using generalized exponential and Weibull distributions. In particular, the generalized exponential distribution based chart achieves the desired average run length of 370 with a single threshold value across a wide range of shape parameter combinations. On the other hand, the Weibull distribution requires different threshold values depending on its shape parameter. These findings highlight the significance of the two most commonly used distributions in reliability studies and their impact on control chart performance.</p>\",\"PeriodicalId\":12894,\"journal\":{\"name\":\"Heliyon\",\"volume\":\"10 21\",\"pages\":\"e40001\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heliyon\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.heliyon.2024.e40001\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2024.e40001","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过大量蒙特卡洛模拟,讨论用 Shewhart 控制图监控非正态分布数据的平均值。特别是使用 Weibull、指数和广义指数分布进行系统研究。考虑了不同的参数设置,以评估基于正态近似的 Shewhart 图表的有效性。结果显示,使用广义指数分布和 Weibull 分布的图表之间存在显著差异。特别是,基于广义指数分布的图表在广泛的形状参数组合中,只需一个阈值就能达到所需的平均运行长度 370。另一方面,Weibull 分布根据其形状参数的不同需要不同的阈值。这些发现凸显了可靠性研究中最常用的两种分布的重要性及其对控制图性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative analysis of mean charts assuming Weibull and generalized exponential distributions.

This study discusses Shewhart control charts to monitor the mean of non-normally distributed data using extensive Monte Carlo simulations. In particular, Weibull, exponential, and generalized exponential distributions are used to conduct a systematic study. Different parameters settings are considered to evaluate the effectiveness of the Shewhart charts based on the normal approximation. The results show significant differences between the charts using generalized exponential and Weibull distributions. In particular, the generalized exponential distribution based chart achieves the desired average run length of 370 with a single threshold value across a wide range of shape parameter combinations. On the other hand, the Weibull distribution requires different threshold values depending on its shape parameter. These findings highlight the significance of the two most commonly used distributions in reliability studies and their impact on control chart performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信