Yang Yang, Yinan Zhou, Gary Wessel, Weihua Hu, Dongdong Xu
{"title":"单细胞转录组揭示了一种季节性繁殖远洋鱼类的精原干细胞和精子发生的动态异质性。","authors":"Yang Yang, Yinan Zhou, Gary Wessel, Weihua Hu, Dongdong Xu","doi":"10.1242/dev.203142","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal spermatogenesis in fish is driven by spermatogonial stem cells (SSCs), which undergo a complex cellular process to differentiate into mature sperm. In this study, we characterized spermatogenesis in the large yellow croaker (Larimichthys crocea), a marine fish of significant commercial value, based on a high-resolution single-cell RNA-sequencing atlas of testicular cells from three distinct developmental stages: juvenile, adult differentiating and regressed testes. We detailed a continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, elucidating the molecular events involved in spermatogenesis. We uncovered dynamic heterogeneity in cellular compositions throughout the annual reproductive cycle, accompanied by strong molecular signatures within specific testicular cells. Notably, we identified a distinct population of SSCs and observed a critical metabolic transition from glycolysis to oxidative phosphorylation, enhancing our understanding of the biochemical and molecular characteristics of SSCs. Additionally, we elucidated the interactions between somatic cells and spermatogonia, illuminating the mechanisms that regulate SSC development. Overall, this work enhances our understanding of spermatogenesis in seasonal breeding teleosts and provides essential insights for the further conservation and culture of SSCs.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 22","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptomes reveal spermatogonial stem cells and the dynamic heterogeneity of spermatogenesis in a seasonal breeding teleost.\",\"authors\":\"Yang Yang, Yinan Zhou, Gary Wessel, Weihua Hu, Dongdong Xu\",\"doi\":\"10.1242/dev.203142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seasonal spermatogenesis in fish is driven by spermatogonial stem cells (SSCs), which undergo a complex cellular process to differentiate into mature sperm. In this study, we characterized spermatogenesis in the large yellow croaker (Larimichthys crocea), a marine fish of significant commercial value, based on a high-resolution single-cell RNA-sequencing atlas of testicular cells from three distinct developmental stages: juvenile, adult differentiating and regressed testes. We detailed a continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, elucidating the molecular events involved in spermatogenesis. We uncovered dynamic heterogeneity in cellular compositions throughout the annual reproductive cycle, accompanied by strong molecular signatures within specific testicular cells. Notably, we identified a distinct population of SSCs and observed a critical metabolic transition from glycolysis to oxidative phosphorylation, enhancing our understanding of the biochemical and molecular characteristics of SSCs. Additionally, we elucidated the interactions between somatic cells and spermatogonia, illuminating the mechanisms that regulate SSC development. Overall, this work enhances our understanding of spermatogenesis in seasonal breeding teleosts and provides essential insights for the further conservation and culture of SSCs.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\"151 22\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.203142\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.203142","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Single-cell transcriptomes reveal spermatogonial stem cells and the dynamic heterogeneity of spermatogenesis in a seasonal breeding teleost.
Seasonal spermatogenesis in fish is driven by spermatogonial stem cells (SSCs), which undergo a complex cellular process to differentiate into mature sperm. In this study, we characterized spermatogenesis in the large yellow croaker (Larimichthys crocea), a marine fish of significant commercial value, based on a high-resolution single-cell RNA-sequencing atlas of testicular cells from three distinct developmental stages: juvenile, adult differentiating and regressed testes. We detailed a continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, elucidating the molecular events involved in spermatogenesis. We uncovered dynamic heterogeneity in cellular compositions throughout the annual reproductive cycle, accompanied by strong molecular signatures within specific testicular cells. Notably, we identified a distinct population of SSCs and observed a critical metabolic transition from glycolysis to oxidative phosphorylation, enhancing our understanding of the biochemical and molecular characteristics of SSCs. Additionally, we elucidated the interactions between somatic cells and spermatogonia, illuminating the mechanisms that regulate SSC development. Overall, this work enhances our understanding of spermatogenesis in seasonal breeding teleosts and provides essential insights for the further conservation and culture of SSCs.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.