Abdullah Alsultan, Abdullah Aljutayli, Abdulrhman Aljouie, Ahmed Albassam, Jean-Baptiste Woillard
{"title":"在有限采样策略中利用机器学习高效估算药代动力学分析中的曲线下面积:综述。","authors":"Abdullah Alsultan, Abdullah Aljutayli, Abdulrhman Aljouie, Ahmed Albassam, Jean-Baptiste Woillard","doi":"10.1007/s00228-024-03780-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Limited sampling strategies are widely employed in clinical practice to minimize the number of blood samples required for the accurate area under the curve calculations, as obtaining these samples can be costly and challenging. Traditionally, the maximum a posteriori Bayesian estimation has been the standard method for the area under the curve estimation based on limited samples. However, machine learning is emerging as a promising alternative for this purpose. Here, we review studies that utilize machine learning approaches to develop limited sampling strategies and compare the strengths and weaknesses of these machine learning methods.</p><p><strong>Methods: </strong>We searched the literature for studies that used machine learning to estimate the area under the curve using a limited sampling strategy approach.</p><p><strong>Results: </strong>We identified ten studies that developed machine learning models to estimate the area under the curve for six different drugs. Several of these models demonstrated good accuracy and precision in area under the curve estimation in reference to the traditional Bayesian approach, highlighting the potential of machine learning models in precision dosing.</p><p><strong>Conclusions: </strong>Despite these promising early results, the development of machine learning for limited sampling strategies is still in its early stages. Further research might be needed to validate machine learning models with larger, high-quality clinical datasets to ensure their reliability and applicability in clinical settings.</p>","PeriodicalId":11857,"journal":{"name":"European Journal of Clinical Pharmacology","volume":" ","pages":"183-201"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging machine learning in limited sampling strategies for efficient estimation of the area under the curve in pharmacokinetic analysis: a review.\",\"authors\":\"Abdullah Alsultan, Abdullah Aljutayli, Abdulrhman Aljouie, Ahmed Albassam, Jean-Baptiste Woillard\",\"doi\":\"10.1007/s00228-024-03780-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Limited sampling strategies are widely employed in clinical practice to minimize the number of blood samples required for the accurate area under the curve calculations, as obtaining these samples can be costly and challenging. Traditionally, the maximum a posteriori Bayesian estimation has been the standard method for the area under the curve estimation based on limited samples. However, machine learning is emerging as a promising alternative for this purpose. Here, we review studies that utilize machine learning approaches to develop limited sampling strategies and compare the strengths and weaknesses of these machine learning methods.</p><p><strong>Methods: </strong>We searched the literature for studies that used machine learning to estimate the area under the curve using a limited sampling strategy approach.</p><p><strong>Results: </strong>We identified ten studies that developed machine learning models to estimate the area under the curve for six different drugs. Several of these models demonstrated good accuracy and precision in area under the curve estimation in reference to the traditional Bayesian approach, highlighting the potential of machine learning models in precision dosing.</p><p><strong>Conclusions: </strong>Despite these promising early results, the development of machine learning for limited sampling strategies is still in its early stages. Further research might be needed to validate machine learning models with larger, high-quality clinical datasets to ensure their reliability and applicability in clinical settings.</p>\",\"PeriodicalId\":11857,\"journal\":{\"name\":\"European Journal of Clinical Pharmacology\",\"volume\":\" \",\"pages\":\"183-201\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Clinical Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00228-024-03780-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00228-024-03780-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Leveraging machine learning in limited sampling strategies for efficient estimation of the area under the curve in pharmacokinetic analysis: a review.
Objective: Limited sampling strategies are widely employed in clinical practice to minimize the number of blood samples required for the accurate area under the curve calculations, as obtaining these samples can be costly and challenging. Traditionally, the maximum a posteriori Bayesian estimation has been the standard method for the area under the curve estimation based on limited samples. However, machine learning is emerging as a promising alternative for this purpose. Here, we review studies that utilize machine learning approaches to develop limited sampling strategies and compare the strengths and weaknesses of these machine learning methods.
Methods: We searched the literature for studies that used machine learning to estimate the area under the curve using a limited sampling strategy approach.
Results: We identified ten studies that developed machine learning models to estimate the area under the curve for six different drugs. Several of these models demonstrated good accuracy and precision in area under the curve estimation in reference to the traditional Bayesian approach, highlighting the potential of machine learning models in precision dosing.
Conclusions: Despite these promising early results, the development of machine learning for limited sampling strategies is still in its early stages. Further research might be needed to validate machine learning models with larger, high-quality clinical datasets to ensure their reliability and applicability in clinical settings.
期刊介绍:
The European Journal of Clinical Pharmacology publishes original papers on all aspects of clinical pharmacology and drug therapy in humans. Manuscripts are welcomed on the following topics: therapeutic trials, pharmacokinetics/pharmacodynamics, pharmacogenetics, drug metabolism, adverse drug reactions, drug interactions, all aspects of drug development, development relating to teaching in clinical pharmacology, pharmacoepidemiology, and matters relating to the rational prescribing and safe use of drugs. Methodological contributions relevant to these topics are also welcomed.
Data from animal experiments are accepted only in the context of original data in man reported in the same paper. EJCP will only consider manuscripts describing the frequency of allelic variants in different populations if this information is linked to functional data or new interesting variants. Highly relevant differences in frequency with a major impact in drug therapy for the respective population may be submitted as a letter to the editor.
Straightforward phase I pharmacokinetic or pharmacodynamic studies as parts of new drug development will only be considered for publication if the paper involves
-a compound that is interesting and new in some basic or fundamental way, or
-methods that are original in some basic sense, or
-a highly unexpected outcome, or
-conclusions that are scientifically novel in some basic or fundamental sense.