{"title":"硫代磷酸 DNA 修饰系统及相关噬菌体防御系统。","authors":"Lianrong Wang, Yaqian Tang, Zixin Deng, Shi Chen","doi":"10.1146/annurev-micro-041222-014330","DOIUrl":null,"url":null,"abstract":"<p><p>In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"78 1","pages":"447-462"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Phosphorothioate Modification Systems and Associated Phage Defense Systems.\",\"authors\":\"Lianrong Wang, Yaqian Tang, Zixin Deng, Shi Chen\",\"doi\":\"10.1146/annurev-micro-041222-014330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.</p>\",\"PeriodicalId\":7946,\"journal\":{\"name\":\"Annual review of microbiology\",\"volume\":\"78 1\",\"pages\":\"447-462\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-micro-041222-014330\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-041222-014330","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
与众所周知的 DNA 核碱基甲基化不同,DNA 硫代磷酸酯(PT)修饰发生在 DNA 糖-磷酸骨架上。非桥接氧被硫原子取代,从而提高了 DNA 的核酸酶耐受性。近年来,我们对PT修饰酶、原核生物基因组中PT修饰的特征以及与PT相关的生理功能的认识都有了很大的进步。虽然细菌基因组中只有一小部分可修饰识别位点发生了PT修饰,但DndFGH和SspE等酶可以利用这种修饰作为识别标记来区分自体DNA和非自体DNA,从而破坏缺乏PT的入侵DNA,防止自身免疫。我们重点介绍了PT修饰相关防御系统的分子机制。我们还介绍了 PT 系统在噬菌体抗性菌株工程、RNA 编辑和核酸检测方面的显著应用。
DNA Phosphorothioate Modification Systems and Associated Phage Defense Systems.
In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.
期刊介绍:
Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).