金黄色葡萄球菌的细胞生长和分裂。

IF 8.5 1区 生物学 Q1 MICROBIOLOGY
Mariana G Pinho, Simon J Foster
{"title":"金黄色葡萄球菌的细胞生长和分裂。","authors":"Mariana G Pinho, Simon J Foster","doi":"10.1146/annurev-micro-041222-125931","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in <i>Staphylococcus aureus</i>, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"78 1","pages":"293-310"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Growth and Division of <i>Staphylococcus aureus</i>.\",\"authors\":\"Mariana G Pinho, Simon J Foster\",\"doi\":\"10.1146/annurev-micro-041222-125931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in <i>Staphylococcus aureus</i>, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.</p>\",\"PeriodicalId\":7946,\"journal\":{\"name\":\"Annual review of microbiology\",\"volume\":\"78 1\",\"pages\":\"293-310\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-micro-041222-125931\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-041222-125931","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌细胞的生长和分裂需要多个过程在时间和空间上的协调,以确保存活和形态发生。从细胞质内部到细胞包膜,这些机制既决定了动态细胞结构和成分,也由动态细胞结构和成分决定。细胞周期中特有的形态变化主要由细胞壁的结构和力学驱动。金黄色葡萄球菌的生长和分裂受一组蛋白质的控制,其他生物体中也有相应的蛋白质,这暗示了潜在的保守机制。在此,我们回顾了有关这种重要病原体细胞周期的知识现状,并阐述了这些知识如何帮助我们理解抗生素的作用和抗菌药耐药性的幽灵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell Growth and Division of Staphylococcus aureus.

Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in Staphylococcus aureus, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of microbiology
Annual review of microbiology 生物-微生物学
CiteScore
18.10
自引率
0.00%
发文量
37
期刊介绍: Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信