Young Bin Yoon, In Cho, Hye Been Koo, Hoeyun Jung, Jae-Byum Chang
{"title":"通过刺激特异性可裂解交联剂实现选择性可剥离水凝胶粘附。","authors":"Young Bin Yoon, In Cho, Hye Been Koo, Hoeyun Jung, Jae-Byum Chang","doi":"10.1021/acsami.4c15507","DOIUrl":null,"url":null,"abstract":"<p><p>The development of detachable hydrogel adhesion presents an advancement in the fields of soft electronics and bioengineering as it offers additional functionalities to these applications. However, conventional methods typically rely on a single detachment trigger, so it is unclear whether unintentional detachment might occur in the specific environments of other detachment systems. This makes it difficult to directly introduce two independent detachment triggers directly. In this article, we present a strategy for selective detachable adhesion based on two types of cleavable cross-linkers, <i>N</i>,<i>N</i>'-bis(acryloyl)cystamine (BAC) and <i>N</i>,<i>N</i>'-(1,2-dihydroxyethylene)bis(acrylamide) (DHEBA), each with an independent cleavage trigger. BAC can be cleaved through the reduction of disulfide bonds using reducing agents, while DHEBA can be hydrolyzed through heating. We constructed stitching polymer networks for topological adhesion using two types of cleavable cross-linkers, allowing the networks to be selectively degraded depending on which cross-linker was used. Our findings show that the use of cleavable cross-linkers achieved selectively detachable adhesion in various hydrogels, with adhesion energy that reached up to 1223 J m<sup>-</sup><sup>2</sup> in polyacrylamide-alginate (PAAm-alginate) tough hydrogel. This strategy also proved versatile as it led to effective adhesion with various substrates, including aluminum, copper, glass, and polyester film (PET). Furthermore, we took advantage of the high programmability of this approach to construct hydrogel-based YES and AND logic gates, whose output changed depending on the applied input triggers. In addition, we designed a selective-release capsule model capable of dual-solution release, which emphasizes the potential of our strategy in creating programmable and responsive soft materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"66738-66752"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selectively Detachable Hydrogel Adhesion Enabled by Stimulus-Specific Cleavable Cross-Linkers.\",\"authors\":\"Young Bin Yoon, In Cho, Hye Been Koo, Hoeyun Jung, Jae-Byum Chang\",\"doi\":\"10.1021/acsami.4c15507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of detachable hydrogel adhesion presents an advancement in the fields of soft electronics and bioengineering as it offers additional functionalities to these applications. However, conventional methods typically rely on a single detachment trigger, so it is unclear whether unintentional detachment might occur in the specific environments of other detachment systems. This makes it difficult to directly introduce two independent detachment triggers directly. In this article, we present a strategy for selective detachable adhesion based on two types of cleavable cross-linkers, <i>N</i>,<i>N</i>'-bis(acryloyl)cystamine (BAC) and <i>N</i>,<i>N</i>'-(1,2-dihydroxyethylene)bis(acrylamide) (DHEBA), each with an independent cleavage trigger. BAC can be cleaved through the reduction of disulfide bonds using reducing agents, while DHEBA can be hydrolyzed through heating. We constructed stitching polymer networks for topological adhesion using two types of cleavable cross-linkers, allowing the networks to be selectively degraded depending on which cross-linker was used. Our findings show that the use of cleavable cross-linkers achieved selectively detachable adhesion in various hydrogels, with adhesion energy that reached up to 1223 J m<sup>-</sup><sup>2</sup> in polyacrylamide-alginate (PAAm-alginate) tough hydrogel. This strategy also proved versatile as it led to effective adhesion with various substrates, including aluminum, copper, glass, and polyester film (PET). Furthermore, we took advantage of the high programmability of this approach to construct hydrogel-based YES and AND logic gates, whose output changed depending on the applied input triggers. In addition, we designed a selective-release capsule model capable of dual-solution release, which emphasizes the potential of our strategy in creating programmable and responsive soft materials.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"66738-66752\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c15507\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15507","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Selectively Detachable Hydrogel Adhesion Enabled by Stimulus-Specific Cleavable Cross-Linkers.
The development of detachable hydrogel adhesion presents an advancement in the fields of soft electronics and bioengineering as it offers additional functionalities to these applications. However, conventional methods typically rely on a single detachment trigger, so it is unclear whether unintentional detachment might occur in the specific environments of other detachment systems. This makes it difficult to directly introduce two independent detachment triggers directly. In this article, we present a strategy for selective detachable adhesion based on two types of cleavable cross-linkers, N,N'-bis(acryloyl)cystamine (BAC) and N,N'-(1,2-dihydroxyethylene)bis(acrylamide) (DHEBA), each with an independent cleavage trigger. BAC can be cleaved through the reduction of disulfide bonds using reducing agents, while DHEBA can be hydrolyzed through heating. We constructed stitching polymer networks for topological adhesion using two types of cleavable cross-linkers, allowing the networks to be selectively degraded depending on which cross-linker was used. Our findings show that the use of cleavable cross-linkers achieved selectively detachable adhesion in various hydrogels, with adhesion energy that reached up to 1223 J m-2 in polyacrylamide-alginate (PAAm-alginate) tough hydrogel. This strategy also proved versatile as it led to effective adhesion with various substrates, including aluminum, copper, glass, and polyester film (PET). Furthermore, we took advantage of the high programmability of this approach to construct hydrogel-based YES and AND logic gates, whose output changed depending on the applied input triggers. In addition, we designed a selective-release capsule model capable of dual-solution release, which emphasizes the potential of our strategy in creating programmable and responsive soft materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.