Bruna B Vargas, Adriane A L Rodriguez, Camila Crauss, Carolina V Barbosa, Carine Baggiotto, Ênio Leandro Machado, Vanessa Rosana Ribeiro
{"title":"利用紫外线和二氧化钛光催化反应器对室内空气进行消毒。","authors":"Bruna B Vargas, Adriane A L Rodriguez, Camila Crauss, Carolina V Barbosa, Carine Baggiotto, Ênio Leandro Machado, Vanessa Rosana Ribeiro","doi":"10.1590/0001-3765202420240304","DOIUrl":null,"url":null,"abstract":"<p><p>Air contamination in confined environments can lead to severe health damage. Searching for effective and sustainable technologies that might bring quality to indoor air is necessary. Heterogeneous photocatalysis has been studied for its ability to oxidize, inactivating microorganisms in the air. In the present work, a reactor was assembled, where titanium dioxide (TiO2) P25 was incorporated into the inner face of polyvinyl chloride (PVC) tubes and vegetable sponges (Luffa sp.). Polyester Orthophthalic (PO) resin was used to fix the TiO2 onto the surfaces. Ultraviolet lamps (UVA) were used to activate the TiO2 catalyst to test the inactivation capacity of microorganisms, as they are economical and present high energy efficiency and long service life. The inactivation of microorganisms was evaluated in natural and artificially contaminated atmospheres. The photocatalytic reactor proved efficient in most tests in both atmospheres. In tests 1 and 2, no bacterial colony-forming units (CFUs) were found in the photocatalysis tube. In test 3, the average of 5 CFUs of fungi in the photocatalysis tube and 12.67 in the control tube was found, indicating inactivation. Therefore, this research is essential for presenting an alternative solution for indoor air treatment.</p>","PeriodicalId":7776,"journal":{"name":"Anais da Academia Brasileira de Ciencias","volume":"96 4","pages":"e20240304"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disinfection of indoor air using ultraviolet and titanium dioxide photocatalytic reactor.\",\"authors\":\"Bruna B Vargas, Adriane A L Rodriguez, Camila Crauss, Carolina V Barbosa, Carine Baggiotto, Ênio Leandro Machado, Vanessa Rosana Ribeiro\",\"doi\":\"10.1590/0001-3765202420240304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Air contamination in confined environments can lead to severe health damage. Searching for effective and sustainable technologies that might bring quality to indoor air is necessary. Heterogeneous photocatalysis has been studied for its ability to oxidize, inactivating microorganisms in the air. In the present work, a reactor was assembled, where titanium dioxide (TiO2) P25 was incorporated into the inner face of polyvinyl chloride (PVC) tubes and vegetable sponges (Luffa sp.). Polyester Orthophthalic (PO) resin was used to fix the TiO2 onto the surfaces. Ultraviolet lamps (UVA) were used to activate the TiO2 catalyst to test the inactivation capacity of microorganisms, as they are economical and present high energy efficiency and long service life. The inactivation of microorganisms was evaluated in natural and artificially contaminated atmospheres. The photocatalytic reactor proved efficient in most tests in both atmospheres. In tests 1 and 2, no bacterial colony-forming units (CFUs) were found in the photocatalysis tube. In test 3, the average of 5 CFUs of fungi in the photocatalysis tube and 12.67 in the control tube was found, indicating inactivation. Therefore, this research is essential for presenting an alternative solution for indoor air treatment.</p>\",\"PeriodicalId\":7776,\"journal\":{\"name\":\"Anais da Academia Brasileira de Ciencias\",\"volume\":\"96 4\",\"pages\":\"e20240304\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da Academia Brasileira de Ciencias\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1590/0001-3765202420240304\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da Academia Brasileira de Ciencias","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1590/0001-3765202420240304","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Disinfection of indoor air using ultraviolet and titanium dioxide photocatalytic reactor.
Air contamination in confined environments can lead to severe health damage. Searching for effective and sustainable technologies that might bring quality to indoor air is necessary. Heterogeneous photocatalysis has been studied for its ability to oxidize, inactivating microorganisms in the air. In the present work, a reactor was assembled, where titanium dioxide (TiO2) P25 was incorporated into the inner face of polyvinyl chloride (PVC) tubes and vegetable sponges (Luffa sp.). Polyester Orthophthalic (PO) resin was used to fix the TiO2 onto the surfaces. Ultraviolet lamps (UVA) were used to activate the TiO2 catalyst to test the inactivation capacity of microorganisms, as they are economical and present high energy efficiency and long service life. The inactivation of microorganisms was evaluated in natural and artificially contaminated atmospheres. The photocatalytic reactor proved efficient in most tests in both atmospheres. In tests 1 and 2, no bacterial colony-forming units (CFUs) were found in the photocatalysis tube. In test 3, the average of 5 CFUs of fungi in the photocatalysis tube and 12.67 in the control tube was found, indicating inactivation. Therefore, this research is essential for presenting an alternative solution for indoor air treatment.
期刊介绍:
The Brazilian Academy of Sciences (BAS) publishes its journal, Annals of the Brazilian Academy of Sciences (AABC, in its Brazilianportuguese acronym ), every 3 months, being the oldest journal in Brazil with conkinuous distribukion, daking back to 1929. This scienkihic journal aims to publish the advances in scienkihic research from both Brazilian and foreigner scienkists, who work in the main research centers in the whole world, always looking for excellence.
Essenkially a mulkidisciplinary journal, the AABC cover, with both reviews and original researches, the diverse areas represented in the Academy, such as Biology, Physics, Biomedical Sciences, Chemistry, Agrarian Sciences, Engineering, Mathemakics, Social, Health and Earth Sciences.