地质多孔介质中微生物诱导碳酸盐沉淀的控制因素。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-12-20 Epub Date: 2024-11-29 DOI:10.1016/j.scitotenv.2024.177647
Shunxiang Xia, Wen Song
{"title":"地质多孔介质中微生物诱导碳酸盐沉淀的控制因素。","authors":"Shunxiang Xia, Wen Song","doi":"10.1016/j.scitotenv.2024.177647","DOIUrl":null,"url":null,"abstract":"<p><p>Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO<sub>3</sub> precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177647"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controls on microbially-induced carbonate precipitation in geologic porous media.\",\"authors\":\"Shunxiang Xia, Wen Song\",\"doi\":\"10.1016/j.scitotenv.2024.177647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO<sub>3</sub> precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177647\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177647\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177647","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微生物诱导碳酸盐沉淀(MICP)为确保气体(如二氧化碳、氢气和甲烷)的地质封存提供了一种自然生物矿化方法。例如,脆化井筒水泥中的裂缝为大气气体泄漏提供了途径,而储层中的渗透性异质性会导致指状效应,从而降低储量。然而,由于对所涉及的非线性反应动力学和多相传输耦合的了解有限,MICP 过程的设计仍然是一项挑战。具体来说,以往通过多孔介质进行 MICP 的尝试都受到了碳酸盐沉淀的影响,这种沉淀局限于大块注入表面的前约厘米处。在本研究中,我们研究了使 MICP 深入地层所需的 MICP 反应传输控制。我们使用了一个具有孔隙几何形状和地球化学特征的微模型,该模型代表了真实的地质介质,可直接对孔隙和孔隙组合级矿物、流体和微生物分布进行成像。我们开发了一种在整个微模型中均匀吸附微生物的方法,而不是在入口附近的局部积聚,这种方法可使 MICP 深入多孔介质。进行了一项敏感性分析,以研究注入条件(如速率、浓度)对最大限度地使 CaCO3 从注入点沉淀所需的影响。通过多次循环 MICP,在碳酸盐孔隙体积占据约 8% 的情况下,渗透率降低了约 78%。总之,这项研究证明了 MICP 是一种有效、可控的方法,可以提高地质介质中天然气储存的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controls on microbially-induced carbonate precipitation in geologic porous media.

Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO3 precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信