Monika Raczkiewicz, Aleksandra Bogusz, Bo Pan, Baoshan Xing, Patryk Oleszczuk
{"title":"对比纳米生物炭和传统生物炭对各种生物的环境影响。","authors":"Monika Raczkiewicz, Aleksandra Bogusz, Bo Pan, Baoshan Xing, Patryk Oleszczuk","doi":"10.1016/j.scitotenv.2024.177629","DOIUrl":null,"url":null,"abstract":"<p><p>The environmental hazards of nanobiochar (n-BC) require attention due to limited knowledge. This study is the first to explore the effects of biochar size reduction across various organisms, including bacteria (Allivibrio fischeri), plants (Lemna minor, Lepidium sativum), and invertebrates (Daphnia magna, Folsomia candida). Bulk biochar (b-BC) and n-BC were applied in both liquid and solid-phase tests to assess their ecotoxicity. The resulting leachates were tested at concentrations of 2, 10, and 100 mg/L on organisms such as Daphnia magna and Lemna minor. In the solid-phase tests, b-BC and n-BC were added to the OECD soil at concentrations of 1 % and 5 % to evaluate toxicity in Folsomia candida and at concentrations of 1 % to evaluate toxicity in Lepidium sativum. We found n-BC to be significantly more toxic (by 18 % to 2886 %) to A. fischeri than b-BC, with toxicity increasing over time. Low doses (1 %) of both b-BC and n-BC did not cause mortality or inhibit reproduction in F. candida, though b-BC enhanced reproduction (by 30 % to 56 %) compared to n-BC. At a 5 % dose, both b-BC and n-BC inhibited reproduction F. candida, with n-BC being 0.5 to 1.8 times more toxic. Neither b-BC nor n-BC immobilized D. magna, but both inhibited reproduction (by 28 % to 35 %). The nanoscale dimensions of n-BC facilitated bioaccumulation in D. magna, leading to adhesion on the organism's body. The n-BC had a greater impact on plants, both b-BC and n-BC were non-toxic to L. minor, but all n-BC inhibited root growth in L. sativum. These findings highlight the importance of considering biochar size, feedstock, and pyrolysis conditions when evaluating environmental risks, ensuring safe use in sustainable agriculture.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177629"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrasting environmental impacts of nano-biochar and conventional biochar on various organisms.\",\"authors\":\"Monika Raczkiewicz, Aleksandra Bogusz, Bo Pan, Baoshan Xing, Patryk Oleszczuk\",\"doi\":\"10.1016/j.scitotenv.2024.177629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The environmental hazards of nanobiochar (n-BC) require attention due to limited knowledge. This study is the first to explore the effects of biochar size reduction across various organisms, including bacteria (Allivibrio fischeri), plants (Lemna minor, Lepidium sativum), and invertebrates (Daphnia magna, Folsomia candida). Bulk biochar (b-BC) and n-BC were applied in both liquid and solid-phase tests to assess their ecotoxicity. The resulting leachates were tested at concentrations of 2, 10, and 100 mg/L on organisms such as Daphnia magna and Lemna minor. In the solid-phase tests, b-BC and n-BC were added to the OECD soil at concentrations of 1 % and 5 % to evaluate toxicity in Folsomia candida and at concentrations of 1 % to evaluate toxicity in Lepidium sativum. We found n-BC to be significantly more toxic (by 18 % to 2886 %) to A. fischeri than b-BC, with toxicity increasing over time. Low doses (1 %) of both b-BC and n-BC did not cause mortality or inhibit reproduction in F. candida, though b-BC enhanced reproduction (by 30 % to 56 %) compared to n-BC. At a 5 % dose, both b-BC and n-BC inhibited reproduction F. candida, with n-BC being 0.5 to 1.8 times more toxic. Neither b-BC nor n-BC immobilized D. magna, but both inhibited reproduction (by 28 % to 35 %). The nanoscale dimensions of n-BC facilitated bioaccumulation in D. magna, leading to adhesion on the organism's body. The n-BC had a greater impact on plants, both b-BC and n-BC were non-toxic to L. minor, but all n-BC inhibited root growth in L. sativum. These findings highlight the importance of considering biochar size, feedstock, and pyrolysis conditions when evaluating environmental risks, ensuring safe use in sustainable agriculture.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177629\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177629\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177629","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Contrasting environmental impacts of nano-biochar and conventional biochar on various organisms.
The environmental hazards of nanobiochar (n-BC) require attention due to limited knowledge. This study is the first to explore the effects of biochar size reduction across various organisms, including bacteria (Allivibrio fischeri), plants (Lemna minor, Lepidium sativum), and invertebrates (Daphnia magna, Folsomia candida). Bulk biochar (b-BC) and n-BC were applied in both liquid and solid-phase tests to assess their ecotoxicity. The resulting leachates were tested at concentrations of 2, 10, and 100 mg/L on organisms such as Daphnia magna and Lemna minor. In the solid-phase tests, b-BC and n-BC were added to the OECD soil at concentrations of 1 % and 5 % to evaluate toxicity in Folsomia candida and at concentrations of 1 % to evaluate toxicity in Lepidium sativum. We found n-BC to be significantly more toxic (by 18 % to 2886 %) to A. fischeri than b-BC, with toxicity increasing over time. Low doses (1 %) of both b-BC and n-BC did not cause mortality or inhibit reproduction in F. candida, though b-BC enhanced reproduction (by 30 % to 56 %) compared to n-BC. At a 5 % dose, both b-BC and n-BC inhibited reproduction F. candida, with n-BC being 0.5 to 1.8 times more toxic. Neither b-BC nor n-BC immobilized D. magna, but both inhibited reproduction (by 28 % to 35 %). The nanoscale dimensions of n-BC facilitated bioaccumulation in D. magna, leading to adhesion on the organism's body. The n-BC had a greater impact on plants, both b-BC and n-BC were non-toxic to L. minor, but all n-BC inhibited root growth in L. sativum. These findings highlight the importance of considering biochar size, feedstock, and pyrolysis conditions when evaluating environmental risks, ensuring safe use in sustainable agriculture.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.