Sami Kaappa, Suvi Santa-aho, Mari Honkanen, Minnamari Vippola, Lasse Laurson
{"title":"微磁模拟中与位错相互作用的磁畴壁","authors":"Sami Kaappa, Suvi Santa-aho, Mari Honkanen, Minnamari Vippola, Lasse Laurson","doi":"10.1038/s43246-024-00697-9","DOIUrl":null,"url":null,"abstract":"Defects, impurities, and embedded particles in ferromagnetic materials are long known to be responsible for the Barkhausen effect due to the jerky field-driven motion of domain walls and have more recently been shown to play a role also in domain wall dynamics in nanoscale ferromagnetic structures used in spintronics devices. Simulating the magnetic domain wall dynamics in the micromagnetic framework offers a straightforward route to study such systems and phenomena. However, the related work in the past suffers from material imperfections being introduced without proper physical foundation. Here, we implement dislocation stress fields in micromagnetic simulations through the induced anisotropy fields by inverse magnetostriction. The effects of individual dislocations on domain wall dynamics in thin films of different Fe surface lattice planes are characterized numerically. As a demonstration of the applicability of the implementation, we consider disorder fields due to randomly positioned dislocations with different densities, and study the avalanche-like transient approach towards the depinning transition of a domain wall driven by a slowly increasing external magnetic field. Simulating the magnetic domain wall dynamics in ferromagnetic materials is crucial for designing spintronics devices, but including material imperfections is often challenging. Here, the effects of individual dislocations on domain wall dynamics in thin films of iron is investigated by micromagnetic simulations.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00697-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic domain walls interacting with dislocations in micromagnetic simulations\",\"authors\":\"Sami Kaappa, Suvi Santa-aho, Mari Honkanen, Minnamari Vippola, Lasse Laurson\",\"doi\":\"10.1038/s43246-024-00697-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defects, impurities, and embedded particles in ferromagnetic materials are long known to be responsible for the Barkhausen effect due to the jerky field-driven motion of domain walls and have more recently been shown to play a role also in domain wall dynamics in nanoscale ferromagnetic structures used in spintronics devices. Simulating the magnetic domain wall dynamics in the micromagnetic framework offers a straightforward route to study such systems and phenomena. However, the related work in the past suffers from material imperfections being introduced without proper physical foundation. Here, we implement dislocation stress fields in micromagnetic simulations through the induced anisotropy fields by inverse magnetostriction. The effects of individual dislocations on domain wall dynamics in thin films of different Fe surface lattice planes are characterized numerically. As a demonstration of the applicability of the implementation, we consider disorder fields due to randomly positioned dislocations with different densities, and study the avalanche-like transient approach towards the depinning transition of a domain wall driven by a slowly increasing external magnetic field. Simulating the magnetic domain wall dynamics in ferromagnetic materials is crucial for designing spintronics devices, but including material imperfections is often challenging. Here, the effects of individual dislocations on domain wall dynamics in thin films of iron is investigated by micromagnetic simulations.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00697-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00697-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00697-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic domain walls interacting with dislocations in micromagnetic simulations
Defects, impurities, and embedded particles in ferromagnetic materials are long known to be responsible for the Barkhausen effect due to the jerky field-driven motion of domain walls and have more recently been shown to play a role also in domain wall dynamics in nanoscale ferromagnetic structures used in spintronics devices. Simulating the magnetic domain wall dynamics in the micromagnetic framework offers a straightforward route to study such systems and phenomena. However, the related work in the past suffers from material imperfections being introduced without proper physical foundation. Here, we implement dislocation stress fields in micromagnetic simulations through the induced anisotropy fields by inverse magnetostriction. The effects of individual dislocations on domain wall dynamics in thin films of different Fe surface lattice planes are characterized numerically. As a demonstration of the applicability of the implementation, we consider disorder fields due to randomly positioned dislocations with different densities, and study the avalanche-like transient approach towards the depinning transition of a domain wall driven by a slowly increasing external magnetic field. Simulating the magnetic domain wall dynamics in ferromagnetic materials is crucial for designing spintronics devices, but including material imperfections is often challenging. Here, the effects of individual dislocations on domain wall dynamics in thin films of iron is investigated by micromagnetic simulations.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.