Ziqian Zhang, Robert Schuerhuber, Lothar Fickert, Guochu Chen
{"title":"多变流器系统的动态建模和平衡流形:关于可再生能源发电厂中并网和跟网变流器的研究","authors":"Ziqian Zhang, Robert Schuerhuber, Lothar Fickert, Guochu Chen","doi":"10.1049/rpg2.13103","DOIUrl":null,"url":null,"abstract":"<p>This study explores the optimal balance between grid-forming (GFM) and grid-following (GFL) converter capacities within power stations to ensure stable operations. The investigation introduces a novel, generic modelling approach for analysing multiple converter systems in the wind and photovoltaic power plants. The method aims to elucidate the dynamic characteristics of the converters in power plants, particularly focusing on the continuity and existence of the equilibrium manifolds and their impact on system stability. Findings reveal a pronounced difference in the recovery capabilities of GFM and GFL following synchronization losses, highlighting an asymmetry in their abilities. Specifically, GFL converters exhibit more effectiveness in reinstating synchrony after synchronization losses caused by GFM. Conversely, GFM demonstrates a lesser capacity to recover from synchronization losses induced by GFL. Furthermore, analysis indicates that when the capacity ratio of GFL to the system's short-circuit capacity significantly exceeds that of GFM (exceeding a 1:5 ratio), the system experiences an absence of a stable equilibrium point, thereby affecting the synchronization stability of GFM. These conclusions have been validated through joint controller hardware-in-the-loop testing.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 15","pages":"3253-3267"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13103","citationCount":"0","resultStr":"{\"title\":\"Dynamic modelling and equilibrium manifold of multi-converter systems: A study on grid-forming and grid-following converters in renewable energy power plants\",\"authors\":\"Ziqian Zhang, Robert Schuerhuber, Lothar Fickert, Guochu Chen\",\"doi\":\"10.1049/rpg2.13103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the optimal balance between grid-forming (GFM) and grid-following (GFL) converter capacities within power stations to ensure stable operations. The investigation introduces a novel, generic modelling approach for analysing multiple converter systems in the wind and photovoltaic power plants. The method aims to elucidate the dynamic characteristics of the converters in power plants, particularly focusing on the continuity and existence of the equilibrium manifolds and their impact on system stability. Findings reveal a pronounced difference in the recovery capabilities of GFM and GFL following synchronization losses, highlighting an asymmetry in their abilities. Specifically, GFL converters exhibit more effectiveness in reinstating synchrony after synchronization losses caused by GFM. Conversely, GFM demonstrates a lesser capacity to recover from synchronization losses induced by GFL. Furthermore, analysis indicates that when the capacity ratio of GFL to the system's short-circuit capacity significantly exceeds that of GFM (exceeding a 1:5 ratio), the system experiences an absence of a stable equilibrium point, thereby affecting the synchronization stability of GFM. These conclusions have been validated through joint controller hardware-in-the-loop testing.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 15\",\"pages\":\"3253-3267\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13103\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Dynamic modelling and equilibrium manifold of multi-converter systems: A study on grid-forming and grid-following converters in renewable energy power plants
This study explores the optimal balance between grid-forming (GFM) and grid-following (GFL) converter capacities within power stations to ensure stable operations. The investigation introduces a novel, generic modelling approach for analysing multiple converter systems in the wind and photovoltaic power plants. The method aims to elucidate the dynamic characteristics of the converters in power plants, particularly focusing on the continuity and existence of the equilibrium manifolds and their impact on system stability. Findings reveal a pronounced difference in the recovery capabilities of GFM and GFL following synchronization losses, highlighting an asymmetry in their abilities. Specifically, GFL converters exhibit more effectiveness in reinstating synchrony after synchronization losses caused by GFM. Conversely, GFM demonstrates a lesser capacity to recover from synchronization losses induced by GFL. Furthermore, analysis indicates that when the capacity ratio of GFL to the system's short-circuit capacity significantly exceeds that of GFM (exceeding a 1:5 ratio), the system experiences an absence of a stable equilibrium point, thereby affecting the synchronization stability of GFM. These conclusions have been validated through joint controller hardware-in-the-loop testing.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf