Yonglei Zhang
(, ), Hao Wen
(, ), Haiyan Hu
(, ), Dongping Jin
(, )
{"title":"利用凸轮-滚子-弹簧-连杆机构设计刚度可调的新型准零刚度隔振器","authors":"Yonglei Zhang \n (, ), Hao Wen \n (, ), Haiyan Hu \n (, ), Dongping Jin \n (, )","doi":"10.1007/s10409-024-24210-x","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-zero stiffness (QZS) isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands. However, traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics, often struggling to withstand excitations with high amplitude. This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism (SRM) to provide primary negative stiffness. The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end, along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors. The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression. The nonlinear stiffness with softening properties can also be achieved by parameter adjustment. The study begins with the force-displacement relationship of the integrated mechanism first, followed by the design theory of the cam profile. The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method. The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions, and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel quasi-zero stiffness isolator with designable stiffness using cam-roller-spring-rod mechanism\",\"authors\":\"Yonglei Zhang \\n (, ), Hao Wen \\n (, ), Haiyan Hu \\n (, ), Dongping Jin \\n (, )\",\"doi\":\"10.1007/s10409-024-24210-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quasi-zero stiffness (QZS) isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands. However, traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics, often struggling to withstand excitations with high amplitude. This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism (SRM) to provide primary negative stiffness. The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end, along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors. The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression. The nonlinear stiffness with softening properties can also be achieved by parameter adjustment. The study begins with the force-displacement relationship of the integrated mechanism first, followed by the design theory of the cam profile. The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method. The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions, and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24210-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24210-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A novel quasi-zero stiffness isolator with designable stiffness using cam-roller-spring-rod mechanism
Quasi-zero stiffness (QZS) isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands. However, traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics, often struggling to withstand excitations with high amplitude. This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism (SRM) to provide primary negative stiffness. The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end, along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors. The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression. The nonlinear stiffness with softening properties can also be achieved by parameter adjustment. The study begins with the force-displacement relationship of the integrated mechanism first, followed by the design theory of the cam profile. The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method. The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions, and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics