Liu Yang, Mingjun Li, Haitao Zhang, Yan Liu, Zhaoyang Liu, Zhengyan Zhang, Fei Gong, Suling Wang
{"title":"逆流浸润的相场模拟及影响回收效率的因素","authors":"Liu Yang, Mingjun Li, Haitao Zhang, Yan Liu, Zhaoyang Liu, Zhengyan Zhang, Fei Gong, Suling Wang","doi":"10.1007/s11242-024-02134-4","DOIUrl":null,"url":null,"abstract":"<div><p>Counter-current imbibition can improve the recovery efficiency of complex fractured reservoirs, but there are few studies on the pore-scale mechanism and the factors affecting the recovery efficiency. This paper attempts to track the microscopic oil–water imbibition process through phase field method simulation, revealing the distribution characteristics of oil and water phases at different stages, as well as the sudden change characteristics of pressure and velocity at the instant of oil film rupture. Then, the influence of fracture aperture, capillary number and viscosity ratio on oil recovery efficiency is discussed. Results indicate that the microscopic imbibition process can be divided into 4 stages: the oil film forms after oil–water contact, then the oil film ruptures to form oil droplets, then the oil–water line moves outward from the large pore, and finally the oil droplets gather to discharge from the fracture. It is also found that there will be sudden changes at the moment of oil film rupture, the pressure drops sharply and the velocity increases sharply. Moreover, there exists a critical fracture aperture which is approximately 10 times the average pore size, and if the fracture is smaller than the critical fracture aperture, a dead oil zone occurs, which affects recovery. Additionally, Log<i>M</i>-LogCa stability diagram is constructed which is mainly dominated by viscous forces, capillary forces. As the capillary number increases, the recovery efficiency shows an overall decreasing trend. When the viscosity ratio was greater than 10, there was no significant change in the recovery efficiency, influenced by the weakening of the dominant role of viscous forces. New findings are beneficial to enhancing the recovery efficiency of low permeability reservoirs.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 15","pages":"2727 - 2743"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-Field Simulation of Counter-Current Imbibition and Factors Influencing Recovery Efficiency\",\"authors\":\"Liu Yang, Mingjun Li, Haitao Zhang, Yan Liu, Zhaoyang Liu, Zhengyan Zhang, Fei Gong, Suling Wang\",\"doi\":\"10.1007/s11242-024-02134-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Counter-current imbibition can improve the recovery efficiency of complex fractured reservoirs, but there are few studies on the pore-scale mechanism and the factors affecting the recovery efficiency. This paper attempts to track the microscopic oil–water imbibition process through phase field method simulation, revealing the distribution characteristics of oil and water phases at different stages, as well as the sudden change characteristics of pressure and velocity at the instant of oil film rupture. Then, the influence of fracture aperture, capillary number and viscosity ratio on oil recovery efficiency is discussed. Results indicate that the microscopic imbibition process can be divided into 4 stages: the oil film forms after oil–water contact, then the oil film ruptures to form oil droplets, then the oil–water line moves outward from the large pore, and finally the oil droplets gather to discharge from the fracture. It is also found that there will be sudden changes at the moment of oil film rupture, the pressure drops sharply and the velocity increases sharply. Moreover, there exists a critical fracture aperture which is approximately 10 times the average pore size, and if the fracture is smaller than the critical fracture aperture, a dead oil zone occurs, which affects recovery. Additionally, Log<i>M</i>-LogCa stability diagram is constructed which is mainly dominated by viscous forces, capillary forces. As the capillary number increases, the recovery efficiency shows an overall decreasing trend. When the viscosity ratio was greater than 10, there was no significant change in the recovery efficiency, influenced by the weakening of the dominant role of viscous forces. New findings are beneficial to enhancing the recovery efficiency of low permeability reservoirs.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"151 15\",\"pages\":\"2727 - 2743\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02134-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02134-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Phase-Field Simulation of Counter-Current Imbibition and Factors Influencing Recovery Efficiency
Counter-current imbibition can improve the recovery efficiency of complex fractured reservoirs, but there are few studies on the pore-scale mechanism and the factors affecting the recovery efficiency. This paper attempts to track the microscopic oil–water imbibition process through phase field method simulation, revealing the distribution characteristics of oil and water phases at different stages, as well as the sudden change characteristics of pressure and velocity at the instant of oil film rupture. Then, the influence of fracture aperture, capillary number and viscosity ratio on oil recovery efficiency is discussed. Results indicate that the microscopic imbibition process can be divided into 4 stages: the oil film forms after oil–water contact, then the oil film ruptures to form oil droplets, then the oil–water line moves outward from the large pore, and finally the oil droplets gather to discharge from the fracture. It is also found that there will be sudden changes at the moment of oil film rupture, the pressure drops sharply and the velocity increases sharply. Moreover, there exists a critical fracture aperture which is approximately 10 times the average pore size, and if the fracture is smaller than the critical fracture aperture, a dead oil zone occurs, which affects recovery. Additionally, LogM-LogCa stability diagram is constructed which is mainly dominated by viscous forces, capillary forces. As the capillary number increases, the recovery efficiency shows an overall decreasing trend. When the viscosity ratio was greater than 10, there was no significant change in the recovery efficiency, influenced by the weakening of the dominant role of viscous forces. New findings are beneficial to enhancing the recovery efficiency of low permeability reservoirs.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).