Kandavkovi Mallikarjuna Nihaal, Ulavathi Shettar Mahabaleshwar, Dia Zeidan, Sang Woo Joo
{"title":"二次热辐射对厚度可变的拉伸片上 MHD 纳米流体流动的影响:Xue 和 Yamado-Ota 热物理模型","authors":"Kandavkovi Mallikarjuna Nihaal, Ulavathi Shettar Mahabaleshwar, Dia Zeidan, Sang Woo Joo","doi":"10.1007/s10409-024-24405-x","DOIUrl":null,"url":null,"abstract":"<div><p>The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology, medicinal treatments, environmental engineering, renewable energy, and heat exchangers. Most published nanofluid flow models assumed constant thermal conductivity and viscosity. With such great physiognomies in mind, the novelty of this work focuses on comparing the performance of the nanofluid models, Xue, and Yamada-Ota models on a stretched sheet with variable thickness under the influence of a magnetic field and quadratic thermal radiation. The altered boundary layer equations for momentum and temperature, subject to adequate boundary conditions, are numerically solved using an optimized, efficient, and extensive bvp-4c approach. The effects of non-dimensional constraints such as magnetic field, power index of velocity, wall thickness parameter, and quadratic radiation parameter on momentum and temperature profile in the boundary layer area are analyzed thoroughly and outcomes were illustrated graphically. Additionally, the consequences of certain distinctive parameters over engineering factors are also examined and results were presented in tabular form. From the outcomes, it is seen that fluid velocity slows down in the presence of a magnetic field but the opposite nature is observed in the case of temperature profile. With a higher index of velocity, the velocity profile decreases and the temperature field elevates. It has been found that the presence of quadratic convection improves the temperature field. The outcomes of the two models are compared. The Yamada-Ota model performed far better than the Xue model in the heat transfer analysis.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of quadratic thermal radiation on MHD nanofluid flow across a stretching sheet with variable thickness: Xue and Yamado-Ota thermophysical model\",\"authors\":\"Kandavkovi Mallikarjuna Nihaal, Ulavathi Shettar Mahabaleshwar, Dia Zeidan, Sang Woo Joo\",\"doi\":\"10.1007/s10409-024-24405-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology, medicinal treatments, environmental engineering, renewable energy, and heat exchangers. Most published nanofluid flow models assumed constant thermal conductivity and viscosity. With such great physiognomies in mind, the novelty of this work focuses on comparing the performance of the nanofluid models, Xue, and Yamada-Ota models on a stretched sheet with variable thickness under the influence of a magnetic field and quadratic thermal radiation. The altered boundary layer equations for momentum and temperature, subject to adequate boundary conditions, are numerically solved using an optimized, efficient, and extensive bvp-4c approach. The effects of non-dimensional constraints such as magnetic field, power index of velocity, wall thickness parameter, and quadratic radiation parameter on momentum and temperature profile in the boundary layer area are analyzed thoroughly and outcomes were illustrated graphically. Additionally, the consequences of certain distinctive parameters over engineering factors are also examined and results were presented in tabular form. From the outcomes, it is seen that fluid velocity slows down in the presence of a magnetic field but the opposite nature is observed in the case of temperature profile. With a higher index of velocity, the velocity profile decreases and the temperature field elevates. It has been found that the presence of quadratic convection improves the temperature field. The outcomes of the two models are compared. The Yamada-Ota model performed far better than the Xue model in the heat transfer analysis.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24405-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24405-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Impact of quadratic thermal radiation on MHD nanofluid flow across a stretching sheet with variable thickness: Xue and Yamado-Ota thermophysical model
The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology, medicinal treatments, environmental engineering, renewable energy, and heat exchangers. Most published nanofluid flow models assumed constant thermal conductivity and viscosity. With such great physiognomies in mind, the novelty of this work focuses on comparing the performance of the nanofluid models, Xue, and Yamada-Ota models on a stretched sheet with variable thickness under the influence of a magnetic field and quadratic thermal radiation. The altered boundary layer equations for momentum and temperature, subject to adequate boundary conditions, are numerically solved using an optimized, efficient, and extensive bvp-4c approach. The effects of non-dimensional constraints such as magnetic field, power index of velocity, wall thickness parameter, and quadratic radiation parameter on momentum and temperature profile in the boundary layer area are analyzed thoroughly and outcomes were illustrated graphically. Additionally, the consequences of certain distinctive parameters over engineering factors are also examined and results were presented in tabular form. From the outcomes, it is seen that fluid velocity slows down in the presence of a magnetic field but the opposite nature is observed in the case of temperature profile. With a higher index of velocity, the velocity profile decreases and the temperature field elevates. It has been found that the presence of quadratic convection improves the temperature field. The outcomes of the two models are compared. The Yamada-Ota model performed far better than the Xue model in the heat transfer analysis.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics