{"title":"作为锂离子电池负极材料的分层氧化硅/氧化镍/碳纳米管结构的简单合成","authors":"Qilun Xiong, Tingting Jiang, Zhuo Hu, Yingke Zhou","doi":"10.1007/s12633-024-03166-7","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon oxide has become promising negative electrode materials for lithium-ion batteries due to its high specific capacity, abundant reserve, and moderate lithiation potential. However, the cyclic stability and high-rate capacity are unsatisfied due to the large volume change during charging/discharging and poor electrical conductivity of both silicon and silicon oxides. Herein, a novel hierarchical structure composed of SiO<sub>x</sub>, NiO and carbon nanotubes (CNTs) is proposed and prepared in a facile ball-milling and hydrothermal method. The interlaced CNTs network and NiO nanoparticles coated outside the SiO<sub>x</sub> particles act as highly conductive porous shell and prevent crack and pulverization of SiO<sub>x</sub>. Benefiting from this structure, the SiO<sub>x</sub>/NiO/CNTs composites demonstrate excellent rate capacity and cyclic performance of 916.3 mAh g<sup>−1</sup> after 200 cycles at 0.5 A g<sup>−1</sup>.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 18","pages":"6415 - 6425"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Synthesis of Hierarchical SiOx/NiO/Carbon Nanotube Structure as Negatrode Materials for Lithium-Ion Batteries\",\"authors\":\"Qilun Xiong, Tingting Jiang, Zhuo Hu, Yingke Zhou\",\"doi\":\"10.1007/s12633-024-03166-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon oxide has become promising negative electrode materials for lithium-ion batteries due to its high specific capacity, abundant reserve, and moderate lithiation potential. However, the cyclic stability and high-rate capacity are unsatisfied due to the large volume change during charging/discharging and poor electrical conductivity of both silicon and silicon oxides. Herein, a novel hierarchical structure composed of SiO<sub>x</sub>, NiO and carbon nanotubes (CNTs) is proposed and prepared in a facile ball-milling and hydrothermal method. The interlaced CNTs network and NiO nanoparticles coated outside the SiO<sub>x</sub> particles act as highly conductive porous shell and prevent crack and pulverization of SiO<sub>x</sub>. Benefiting from this structure, the SiO<sub>x</sub>/NiO/CNTs composites demonstrate excellent rate capacity and cyclic performance of 916.3 mAh g<sup>−1</sup> after 200 cycles at 0.5 A g<sup>−1</sup>.</p></div>\",\"PeriodicalId\":776,\"journal\":{\"name\":\"Silicon\",\"volume\":\"16 18\",\"pages\":\"6415 - 6425\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12633-024-03166-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03166-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
氧化硅具有比容量高、储量丰富和锂化电位适中等优点,已成为锂离子电池的理想负极材料。然而,由于硅和硅氧化物在充放电过程中体积变化大、导电性差,其循环稳定性和高倍率容量并不能令人满意。本文提出了一种由氧化硅、氧化镍和碳纳米管(CNTs)组成的新型分层结构,并通过简便的球磨和水热法制备了这种结构。交错的 CNTs 网络和包覆在 SiOx 颗粒外的 NiO 纳米颗粒起到了高导电性多孔外壳的作用,防止了 SiOx 的开裂和粉碎。得益于这种结构,SiOx/NiO/CNTs 复合材料在 0.5 A g-1 的条件下循环 200 次后,显示出卓越的速率容量和 916.3 mAh g-1 的循环性能。
Facile Synthesis of Hierarchical SiOx/NiO/Carbon Nanotube Structure as Negatrode Materials for Lithium-Ion Batteries
Silicon oxide has become promising negative electrode materials for lithium-ion batteries due to its high specific capacity, abundant reserve, and moderate lithiation potential. However, the cyclic stability and high-rate capacity are unsatisfied due to the large volume change during charging/discharging and poor electrical conductivity of both silicon and silicon oxides. Herein, a novel hierarchical structure composed of SiOx, NiO and carbon nanotubes (CNTs) is proposed and prepared in a facile ball-milling and hydrothermal method. The interlaced CNTs network and NiO nanoparticles coated outside the SiOx particles act as highly conductive porous shell and prevent crack and pulverization of SiOx. Benefiting from this structure, the SiOx/NiO/CNTs composites demonstrate excellent rate capacity and cyclic performance of 916.3 mAh g−1 after 200 cycles at 0.5 A g−1.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.