不同岩石比例的土石混合物强度预测模型

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Yalong Jiang, Xin Tang, Bitang Zhu, Jianyong Li, Shengyu Zhang, Fengqu Zheng, Jianjun Zeng
{"title":"不同岩石比例的土石混合物强度预测模型","authors":"Yalong Jiang,&nbsp;Xin Tang,&nbsp;Bitang Zhu,&nbsp;Jianyong Li,&nbsp;Shengyu Zhang,&nbsp;Fengqu Zheng,&nbsp;Jianjun Zeng","doi":"10.1007/s10064-024-03963-9","DOIUrl":null,"url":null,"abstract":"<div><p>Soil-rock mixtures in fault fracture zones are composed of rock blocks with high strength and fault mud with low strength. In this paper, in order to study the mechanical properties of the soil-rock mixture with non-cohesive matrix, a large-scale laboratory triaxial compression test with a specimen size of 500 mm×1000 mm is conducted, combined with numerical simulation analyses based on the two-dimensional particle flow software PFC2D. The macroscopic mechanical response and mesoscopic fracture mechanism of soil-rock mixtures with varying rock block proportions, block orientation angles and matrix strengths are studied. The results indicate the following: (1) When the proportion is less than 30%, the shear characteristics of the mixture are similar to those of its non-cohesive matrix. When the proportion is in the range of 30-70%, the internal friction angle and cohesion increase rapidly, and the softening characteristics of the mixture become more apparent. When the proportion exceeds 70%, the aforementioned effect slows. (2) The strength of the mixture is positively correlated with its matrix strength, and the influence of the matrix strength on the loading curve of the mixture is related to the block proportion. (3) When the block orientation angle is 0°, the cohesion and internal friction angle are slightly greater than those at an angle of 90°. Based on the above, for the soil-rock mixture with non-cohesive matrix, a strength prediction model based on the block proportion is given when the block orientation angle and matrix strength are consistent.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strength prediction model of soil-rock mixture with varying rock proportions\",\"authors\":\"Yalong Jiang,&nbsp;Xin Tang,&nbsp;Bitang Zhu,&nbsp;Jianyong Li,&nbsp;Shengyu Zhang,&nbsp;Fengqu Zheng,&nbsp;Jianjun Zeng\",\"doi\":\"10.1007/s10064-024-03963-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil-rock mixtures in fault fracture zones are composed of rock blocks with high strength and fault mud with low strength. In this paper, in order to study the mechanical properties of the soil-rock mixture with non-cohesive matrix, a large-scale laboratory triaxial compression test with a specimen size of 500 mm×1000 mm is conducted, combined with numerical simulation analyses based on the two-dimensional particle flow software PFC2D. The macroscopic mechanical response and mesoscopic fracture mechanism of soil-rock mixtures with varying rock block proportions, block orientation angles and matrix strengths are studied. The results indicate the following: (1) When the proportion is less than 30%, the shear characteristics of the mixture are similar to those of its non-cohesive matrix. When the proportion is in the range of 30-70%, the internal friction angle and cohesion increase rapidly, and the softening characteristics of the mixture become more apparent. When the proportion exceeds 70%, the aforementioned effect slows. (2) The strength of the mixture is positively correlated with its matrix strength, and the influence of the matrix strength on the loading curve of the mixture is related to the block proportion. (3) When the block orientation angle is 0°, the cohesion and internal friction angle are slightly greater than those at an angle of 90°. Based on the above, for the soil-rock mixture with non-cohesive matrix, a strength prediction model based on the block proportion is given when the block orientation angle and matrix strength are consistent.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03963-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03963-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

断层断裂带中的土岩混合物由强度高的岩块和强度低的断层泥组成。本文以非粘性基体土岩混合物为研究对象,结合二维粒子流软件 PFC2D 的数值模拟分析,进行了试样尺寸为 500 mm×1000 mm 的大型实验室三轴压缩试验,研究了土岩混合物的力学性质。研究了不同岩块比例、岩块定向角和基体强度的土岩混合物的宏观力学响应和中观断裂机制。结果表明(1) 当比例小于 30% 时,混合物的剪切特性与其非粘性基体的剪切特性相似。当比例在 30%-70%范围内时,内摩擦角和内聚力迅速增加,混合物的软化特征更加明显。当比例超过 70% 时,上述效果减弱。(2)混合料的强度与其基体强度呈正相关,基体强度对混合料加载曲线的影响与砌块配比有关。(3)当块体定向角为 0°时,内聚力和内摩擦角略大于定向角为 90°时的内聚力和内摩擦角。综上所述,对于非粘性基质的土岩混合物,当块体定向角与基质强度一致时,可给出基于块体比例的强度预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A strength prediction model of soil-rock mixture with varying rock proportions

A strength prediction model of soil-rock mixture with varying rock proportions

Soil-rock mixtures in fault fracture zones are composed of rock blocks with high strength and fault mud with low strength. In this paper, in order to study the mechanical properties of the soil-rock mixture with non-cohesive matrix, a large-scale laboratory triaxial compression test with a specimen size of 500 mm×1000 mm is conducted, combined with numerical simulation analyses based on the two-dimensional particle flow software PFC2D. The macroscopic mechanical response and mesoscopic fracture mechanism of soil-rock mixtures with varying rock block proportions, block orientation angles and matrix strengths are studied. The results indicate the following: (1) When the proportion is less than 30%, the shear characteristics of the mixture are similar to those of its non-cohesive matrix. When the proportion is in the range of 30-70%, the internal friction angle and cohesion increase rapidly, and the softening characteristics of the mixture become more apparent. When the proportion exceeds 70%, the aforementioned effect slows. (2) The strength of the mixture is positively correlated with its matrix strength, and the influence of the matrix strength on the loading curve of the mixture is related to the block proportion. (3) When the block orientation angle is 0°, the cohesion and internal friction angle are slightly greater than those at an angle of 90°. Based on the above, for the soil-rock mixture with non-cohesive matrix, a strength prediction model based on the block proportion is given when the block orientation angle and matrix strength are consistent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信